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Abstract - Since non-Newtonian fluids are often encountered in
engineering devices, the nonlinear boundary layer equations
governing the flow and heat transfer properties of a non-
Newtonian Williamson fluid over a stretching (¢ > 0) or
shrinking (¢ < 0) sheet near the stagnation point are analyzed
using two closely interrelated approaches. First, employing the
shooting argument, it is proved that a unique solution exists when
¢ € (—1, ) and second, using the BVP4C solver in MATLAB,
two different solution branches are reported on the interval
[cr, —1], where ¢y is the bifurcation point. The ¢, values become
more negative with increasing values of the Williamson parameter
A, marking the broadening of the solution range. Furthermore, the
first solution branch continues for large positive values of c,
whereas the second branch seems to cease at F"/(0) =0 as ¢ —
—1. The smallest eigenvalue computed using temporal stability
analysis of these solutions is found to be positive for the first
branch, indicating that this branch is physically stable. These
findings are relevant to various industrial processes involving non-
Newtonian fluids, such as polymer processing and coating
applications. Finally, an asymptotic expression is derived to
provide insights into the behavior of large c.

Keywords: Williamson fluid, Existence-Uniqueness, Dual
solutions, Stability analysis, Asymptotic analysis.

© Copyright 2025 Authors - This is an Open Access article
published under the Creative Commons Attribution
License terms (http://creativecommons.org/licenses/by/3.0).
Unrestricted use, distribution, and reproduction in any medium
are permitted, provided the original work is properly cited.

1. Introduction

[t is common knowledge that many industrial (such
as paints and coatings) and physiological (such as blood
and plasma) fluids exhibit complex flow behavior that
the classical Newtonian fluid model cannot adequately
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describe. To gain a better understanding of such fluids,
numerous models (non-Newtonian) have been
suggested over the years to take into account the unique
characteristics of these fluids, including their viscoelastic
properties, shear-thinning or shear-thickening behavior,
and time-dependent responses [1, 2]. The nonlinear
relationships between the stress tensor and the
deformation rate tensor for non-Newtonian fluids give
rise to complex equations. Undoubtedly, it is challenging
to prove the existence and uniqueness/non-uniqueness
of a solution to these equations and obtain their
numerical solution.

This paper focuses on the robust model put forward
by Williamson to describe pseudoplastic fluids [3]. A
large number of published works, for example, the study
of the flow of a thin layer of pseudoplastic fluid over an
inclined solid surface [4], the peristaltic flow of chyme in
the small intestine [5], blood flows through a tapered
artery with stenosis [6], and some boundary layer flows
of Williamson fluid [7], to mention a few, demonstrate
the adequacy of Williamson's model in describing many
frequently observed industrial and physiological fluids
like polymer solutions, paints, blood, and plasma.
Further, one can go through the investigations [8, 9] for
Williamson fluid flows in various geometries (especially
stagnation point flow and stretching/shrinking surface)
under diverse physical conditions. Due to its immense
engineering and industrial applications, the stagnation-
point flow of a viscous or non-Newtonian fluid has been
the subject of several investigations [10, 11]. Another
significant aspect of boundary layer flow involves the
stretching or shrinking phenomena [12].

A review of the literature suggests that the flow
generated by a shrinking sheet has recently captured the



Nomenclature

\% Velocity vector

T Temperature

B First Rivlin-Erickson tensor
P Pressure

K Thermal conductivity

¢p  Specific heat

C Stretching/ Shrinking

Pr  Prandtl number

A Non-Newtonian parameter
Cr  SKin friction coefficient
Nu, Nusselt number

T Anisotropic viscous stress tensor

interest of researchers due to its intriguing physical
characteristics and growing practical implementations.
Wang [11] introduced the concept of flow resulting from
a shrinking sheet and showed that the solution is not
unique to a particular domain. Subsequently, several
research papers [13-15] have been published addressing
the shrinking sheet problem. The works mentioned
above were devoted to finding multiple solutions and
their stability analysis. Analyzing multiple solutions and
stability is crucial in engineering analysis as it enables the
determination of the physical relevance of a steady-state
solution. In the context of stability analysis, Merkin [16]
first found that in time-dependent problems of steady-
state flows, only the stable upper branch solution is
physically possible, as it has the smallest positive
eigenvalue. In contrast, the unstable lower branch
solution is not physically relevant. Recent studies in
references [17, 18] have discussed the stability of
multiple solutions associated with stretching or
shrinking surfaces.

In the last few decades, numerous investigations
have demonstrated the mathematical proof of the
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existence and uniqueness of solutions in boundary layer
fluid flow problems. Miklav¢i¢c and Wang [19]
established the existence and uniqueness of the
similarity solution for the equation describing the flow
caused by a shrinking sheet with suction. Gorder et al.
[20] examined the results concerning the existence and
uniqueness of solutions over the interval [0, ) for the
stagnation-point flow of a hydromagnetic fluid over a
stretching or shrinking sheet. Pallet et al. [10] proved the
existence and uniqueness of a solution for oblique
stagnation point flow by using the topological shooting
argument. However, to the best of the authors'
knowledge, only a limited number of articles are devoted
to answering the question of the existence of a unique
solution, see [21, 22, 23] and the references therein for a
detailed understanding of the methodology used.
Motivated by the investigations mentioned above
and recognizing the widespread applications of
problems involving stretching/shrinking sheets and
non-Newtonian fluids in engineering and industries, we
consider the stagnation point flow of the Williamson
fluid model over a stretching/shrinking surface here.

Primarily, the following research questions are
addressed
e How can the existence and uniqueness of
solutions for the stretching/shrinking
parameter ¢ > —1 be mathematically
established?

e What is the critical point ¢, and how does
the nature of the solution change when ¢ <
cr?

e What are the characteristics of dual
solutions in the shrinking parameter range
cr <c<-17

e How can a linear stability analysis be
conducted to identify stable solutions?

e What are the effects of the non-Newtonian
parameter A and shrinking parameter c
(specifically ¢ < —1) on the velocity and
temperature profiles in the dual solution?

e How do the expressions for shear stresses
and the Nusselt number behave for large ¢ ?

2. Flow Analysis
The continuity and momentum equations for an

incompressible Williamson fluid are expressed as
follows [7]



divv =0 (1)

dv
p P div(—pl + 1) + pf (2)

The energy equation is

aT
pcp(§+V-VT)=V'kVT (3)

Here, V represents the velocity vector, T denotes
the temperature, p stands for density, f denotes the body

d . .. . . N
force, = signifies the material time derivative, p

represents pressure, ¢, indicates the specific heat, k

represent the thermal conductivity and I be the identity
matrix. T be anisotropic viscous stress tensor defined as

[7]

Ho — Hoo
= |, +22—L2IB, 4
v =u +S T (4)

Here py and p., be zero and infinity shear rate
viscosity, respectively, B be the first Rivlin-Erickson
tensor, I' be the time constant and y is defined as

y = ’%trace(Bz) 5

As in [7], we investigate the circumstance where p, = 0
and I'y < 1. Under this variation, (4) transforms into

T=uy[1+Ty]B (6)

Consider a steady, two-dimensional, incompressible
flow of a Williamson fluid over a horizontal linearly
stretching/shrinking sheet with no body force. The
sheet, which coincides with the plane y = 0, is assumed
to be impermeable, so there is no normal velocity across
its surface. The flow is restricted to the area where y >
0. The sheet's velocity is represented by u,,(x) = p;x,
where u,(x) = bx (where b > 0) characterizes the free
stream velocity. Here, the constant p; > 0 represents
stretching and p; < 0 represents shrinking. Let (u, v) be
the velocity component in (x,y) direction and T be the

temperature. Following [7], the boundary layer
equations are expressed as
( 6u+ 6u)_u0 82u+2F6u62u 10p ;
“ox vf)y ~ p \9y? dy dy?) pox’ @

and

k 0°T

( oT N 6T> B
v u _pcpayz'

8

dy dx ®
Relevant boundary conditions for the stagnation point
flow of Williamson fluid over a stretching/shrinking
sheet [7] are

w,v,T) =w,,0,T,) aty =0, 9

(W, T) = (U, Teo) asy = oo, (10)

where T,, and T, are the surface and ambient

temperature, respectively. Using the Bernoulli equation

. . _10p _ du,
and neglecting the hydrostatic term, sax — Ye gy

. 10p 2
ives —=— = b“x.
g p 0x

Following the similarity transformations
u = bxF'(s),v = —VbvF(s),T = Ty, + (Tyy — Too){(S)
[7], where s = \[gy,
the equations (7)-(8) become

F" —F2+1+4+FF"+AF"F" =0,
{"+PrrF{' =0,

(11)
(12)

where 1 = 2Fx\/? be the non-Newtonian Williamson

parameter and Pr = % is the Prandtl number. Also, the

boundary conditions (9)-(10) become
F(0) =0,F'(0) = ¢,F'(0) - 1,4(0) =1, {(0) =0,
(13)

where ¢ = % represents the stretching (¢ > 0) or shrinking

(c < 0) parameter. Wall suction and injection effects are
neglected in this study (F(0) = 0).

The coefficient of skin friction Cr and the Nusselt number
Nu,, which are two crucial physical parameters, are
outlined below

_ xQy
k(T —Ty)'

Tay|
/4 Py
y=0
CF = 2 Nux
pug

(14)



Here, 7, represents the skin friction or shear stress

along the stretching/shrinking surface, and Q,, denotes
the heat flux originating from the stretching/shrinking
surface. These quantities are specified as follows

Txy = Ho <_ +

dy r (g_;)z>'
Qw=—k (%) |y=0-

After using the similarity transformation, equation
(14) becomes

Jdu

1 y)
Re2Cr = F"'(0) + ZF”(O)Z,

Re™Nu, = -7 (0), (15)

where Re = /bsz is the Reynolds number.

3. Existence and uniqueness results for ¢ > —1

3.1 Existence for F(s)

The existence of a solution for the boundary value
problem in equations (11)-(13) is analyzed using the
topological shooting method. This method entails the
investigation of a corresponding group of initial value
problems (IVP), denoted as the ODEs (11) and (13)
(except the condition at o ), in conjunction with an
additional initial condition specified as F''(0) = aq,
where a can take any arbitrary values. Then, the solution
of the IVP depends on both s and a and is denoted as
F(s; a). Although each a yields a solution for the IVP, not
all these solutions will satisfy the boundary conditions
(13). Therefore, it is necessary to determine a suitable
value for a that satisfies the condition at co. To prove the
existence of a solution, the range ¢ > —1 is divided into
two parts: —1 < ¢ < 1 and ¢ > 1. For ¢ = 1, the identity
function F(s) =s is a solution of (11). In this case
F'"(0) = a = 0 for all s, therefore, we did not consider
the case ¢ = 1 in our proof.

3.1.1 Existence Prooffor -1 <c <1

Let us assume two sets P and Q are subsets of (0, o),
defined by
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P ={a > 0:3s; > O0suchthat F’(s;;a) = 0and ¢
< F'(s;a) < 1fors € (0, 51]},

Q= {a > 0:3s; > O0suchthat F'(s;;a) =1and 0 <
F'"(s;a) < a fors € (0,s4]}. (16)

Lemma 1. P and Q are open sets with no elements in
common.

Proof: Clearly P and Q have no element in
common. Leta,; € Pthen3s; > 0suchthatF"'(s;;a;) =
Oandc < F'(s;a,) < 1fors €(0,s,].Since F""'(sy; a,) =
(F’(sl;al))2 — 1 # 0, therefore, using the property of
continuous functions 3 a neighborhood of a; such that
for all points in the neighborhood, F""’(s) have the same
sign as F'"(s;;a;). Thus F''(s) has a root with ¢ <
F'(s) < 1.This shows that P is an open set. Similarly, one
can prove that Q is open as well.

Lemma 2. P is non-void.

Proof: We claim that when a is very small, it is in
P.Leta = 0,then F""'(0; a) < 0 for all a. Thus, in a small
enough vicinity around s = 0, it holds that F"'(s; 0) < 0
and F'(s,0) < 1. Then, through the continuous solutions
of the IVP, along with its initial conditions, there is a
positive number a for which F''(s; a) < 0 and F'(s; a) <
1 hold for all values of s in the vicinity of s = 0. But
F'"(0;a) =a > 0,implies3ad > 0suchthat F''(§;a) =
0and F'(s;a) < 1fors € (0, §]. Hence for small a (> 0),
itisin P.

Lemma 3. Q is non-void.

Proof: We claim that when a is very large, itis in Q,
thatis F' = 1in (0,1] strictly before F'' = 0. If this is not
the case, then the following possibilities must occur : (i)
F" (s; a) = 0 for some point in (0,1] for which F'(s; a) <
1, (ii) F"(s;a) > 0 and F'(s;a) <1 in (0,1], and (iii)
F'"(s;a) =0 and F'(s;a) =1 occur concurrently. If
possible, let 3 ¢; € (0,1] such that F"(cy;a) = 0 with
¢, < F'(s;a) <1 for s € (0,cq]. By integrating, we get
;s <F(s;a)<s. Now let F= f; #dt and
integrating (11) from 0 to s, we get



- - S1—F"?
F"(s)ef® — F"(0)ef©® = f ——dt, 17
(s)e @e"® = | Tmdt A7)
7(s) $ 1—F?
= F"'(5)ef® = +f ———dt. 18
(s)e ) TR (18)
1_F!2
Let H = ——;dt > 0, then from (18) we have
14+AF
F"(s)ef®) = a + Hs. (19)
Then for s € (0, ¢,]
F'"'(s) = (a + H)e F®, (20)

Thus, for large a, F" (s; a) > 0 for all s, leading to a
contradiction. Similarly, it can be shown that the second
statement cannot occur for sufficiently large values of a.
If the third case occurs, then from (11), we get
F'"(s;a) = 0. That implies that F'(s) =1, which
contradicts the fact that F’(0) = c # 1. Therefore,
sufficiently large a belongs to Q.

Theorem 1. For any A > 0, equations (11) and (13) have a
solution. Also, the solution is monotone in nature.

Proof: As (0, =) is a connected set, and both P and
Q are non-empty, open, and disjoint from each other, it
follows from the definition of a connected set that the
union of P and Q cannot be equal to (0, ). Therefore
31> 0suchthatl & Pand! & Q. Also, Lemma 3 implies
that F''(s;1) =0 and F'(s;l)=1 do not occur
simultaneously. Consequently, there is only one
possibility that F''(s;1) >0 and ¢ < F'(s;1) < 1Vs.
Now, from equation (11), it is observed that as F'(o; [)
approaches 1, implies the existence of a monotonically
increasing solution to the boundary value problem (11),
(13).

3.1.2 Existence Proof forc > 1

Let us assume two sets U and V are subsets of
(—00,0), defined by

U={a<0:3s;'">0suchthatF"(s;";a) =0and 1<
F'(s;a) <c fors € (0,s{']},

V={a<0:3s;">0suchthatF'(s;’;a) =1and c <
F'"(s;a) <0 fors € (0,s;']}.

As mentioned in the previous subsection, we will
show the same properties (Lemma 1-3) of the sets U and
V. To show U and V are open is the same as the previous
proof, so we skip this. To prove U is non-void, we will
show that if a < 0 and |a| is very small, it belongs to U.
Now, from (13), first we take a = 0 and subsequently, at
s=0,

F'"(0;0)=(c+1(c—1)>0asc>1,
F"(0;0) = 0and F'(0;0) = ¢ > 1.

(21)
(22)

So we can say that if s is close to 0 then F"'(s; 0) >
0 and F'(s; 0) > 1. By continuous solution of the IVP, for
a # 0 with sufficiently small magnitude, it is evident that
F'(s; a) will be close to F'(s; 0). Specifically, F'(s; a) > 1
with F"'(s;a) = 0, but F""(0;a) < 0 based on equation
(13). This implies that there exists s, > 0 where
F"(s;a) =0, and F'(s;a) >1 whenever s <s,,
showing that the set U is non-empty.

Next, we will prove that VV is non-empty. For that,
first, we integrate equation (11) from 0 to s which gives

2
a—s+2[5 Fds—FF +1%
F' = 2

7 (23)
1+

We claim that for large q, it is in V. If possible, let
the statement mentioned above be false, then atleast one
among the following options is necessary: (i) F''(s; a) =
0 at some point in (0,1] with F'(s; a) > 1. (ii) F''(s; a) <
0 and F'(s; a) > 1 forall s in (0,1]. (iii) F"'(s; a) = 0 and
F'(s;a) = 1 occurs at the same time. Now, we need to
refute each of these statements. Starting with (i), let us
assume that 3¢, such that F''(cy;a) =0 with 1<
F(s;a) < c for s < c;. After integrating, we have s <
F'(s;a) < cs. From (23), we can write

al S
FII < a(1+7) ZJ‘0 FZdS
- AF" AF'T

1+ 1+
2 2

(24)

We are establishing some inequalities to find the
bounds of F" : (a) since 1+ Az—a =1+ %, implies that
a(1+%2)
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1+/1F
2

< a, (b) For 0 < s < 1 implies that 2 fos F'2ds <




2 [ F'%ds

0 < 2¢?. After
142

1

r
142

2c?, also <1 implies that

2 2
applying the inequalities (a)-(b) in (24), we have

F" <a+ 2c? (25)

Now, if we assume that a < —2c?, then (25) gives
F'" < 0, which is a contradiction. So (i) can not happen.
Similarly, if we take a < —c — 2c?, then (ii) can not
happen. If (iii) occurs, then from (13) we have F''(s) = 0
implying that F'(s) = 1 which contradicts the existence
theorem of IVP as F'(0) = ¢ > 1. Hence, ifa < —c — 2c?,
then F'(s; a) = 1 before F''(s; a) = 0, implies a € V and
V is non-empty.

The sets U and V are non-empty, open, and
mutually exclusive. Since (—o0,0) is a connected set,
therefore U UV # (—o0,0). Hence, there exists a* that is
not in U or V. For that particular value of a*, the only
option is F''(s;a*) <0 and 1 < F'(s;a*) < ¢ for s > 0.
Therefore F' (o0, a*) — m (finite). Now, from (11), we get
m = 1 which completes the proof.

3.1.3 Uniqueness Prooffor -1 <c <1

Theorem 2. For any A > 0, the solution is unique.

Proof: We will prove this theorem by using the
method of contradiction. Let us assume that 3 a4, a,
(values of F''(0)) such that F(s; a;) and F(s; a,) are the
corresponding solutions. Apply MVT on the function F’
in the interval [a,,a,] and as s — oo then 3 a* € [ay, a;]

oF' * oF' '
such that E(w,a ) = 0. Next, let 2o =W (s;a) and

differentiating (11) and using the boundary conditions
(13), we have

WII/ _ ZF/WI + A(W///FII + FIIIWII) + (FIWI + FWII) —

0 (26)
with
w(0) = 0,w’(0) = 0,w"(0) = 1,w" (0) = 2 ©
27)

Further differentiating (26), we have

w(1+ AF") + 2AF"'w"" + Aw"F? — F"'w' + Fw"' =
0. (28)
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Now, from (27), we can say that 3 s; > 0 such that
w/(s;a) > 0,w'(s;a) >0,w"'(s;a) <0 for s <s;.
Specifically, the function w'(s; a) is convex downwards,
initially increasing, and it has a maximum value to reach
zero. Let the maximum value occur at s,. Consequently,
w'(sy;;a) =0 and w¥(s;a) <0 for s<s, Also,
w?(s,) = 0. But equation (28) implies

i 1 mnr nr
w(sz) = m(—mw (s2)F""(s2) +
F'(s)w'(s2)) > 0, (29)

a contradiction. However, up until the point s,, w(s; a)
and all its derivatives up to w'’(s;a) are growing
positively. Hence, F(s;a) and all its derivatives up to
F'"(s; @) are increasing functions. Therefore, for any a in
the interval [a4, a,], w'(s,, a) # 0 which contradicts the
MVT of F'. Hence, the proof is complete.

3.1.4 Uniqueness Proof for ¢ > 1

The proof part is similar to Theorem 2. As in
Theorem 2, we define w, which satisfies the equation
(30) and the boundary conditions w(0) = 0,w’(0) =
0,w''(0) = 1. Here, we observe that w and w' are first
positive and increasing. Suppose there exist two
solutions corresponding to aj <aj; <0 (values of
F"(0)). We first prove that w' cannot have a maximum
value. If possible, suppose that w' has a maximum at s,
and at this point, we get w(s;)>0,w'(s;) >
0,w''(s3) = 0and w'”(s3) < 0. Moreover, for s < s;, we
have

1<F'(s;a]) <F'(s;a) < F'(s;a3) (30)
F'"(s;a}) <F"(s;a) < F"(s;a3) <0, (31)
Now from (30), we get

w''(s3) = H—T”(sz*)[F’(S;)W’(S;)
AF" (sp)w" (s3) — F(sp)w" (s3)] > 0 (32)

which contradicts that w'”(s;) < 0. Therefore, w’
cannot have a maximum, and a positive L and s; exists
for which w' is greater than L for all s beyond ss.
Applying MVT, we can write for a; < a** < a;

FI
F'(s;a3) = F'(s;a1) = (—

0 )
a %
a=a

0

(az —a1) (33)



As s — o0 in (33) gives a contradiction (left-hand side is
0 and right-hand side is always positive), demonstrating
that for ¢ > 1, there cannot be two solutions.

3.2 Existence for {(s) :

Theorem 3. 1f {(s) is a twice differentiable function
satisfying (12) with boundary condition (13), then {(s)
is of the form

fsoo (e—fos Pers) ds
® (e_fos Pers) ds

Iy

¢(s) = [24] (34)

4 Numerical Solution

In this section, we are solving (11)-(13)
numerically by the BVP4C solver in MATLAB. Now,
equations (11)-(13) can be written as a system of first-
order initial value problems. For that let F = y;, F’
ya, F'"' = v3,{ = y,,{' = ys then from (11)-(13), we can
obtain

Vi =2 )
V2 =Y3
2
Y3 —y1¥z3—1
ro 222 J173 - 35
V3 T+ 1y, > (35)
Ya =Ys
ys = —Pry;ys
with
y1(0) = 0y
¥2(0)=c
y2(0) =1 (36)
v4(0) =1
Y4 () =0

Now, we can solve equation (35) along with the
boundary conditions (36). To obtain the value of s,,we
need to choose initial values and use them to solve for
F'",F',F,{' and {. The MATLAB solver BVP4C was
employed with a mesh of 400 points, a relative tolerance
of 107%, and an absolute tolerance of 1078, The far-field
boundary was truncated at s, = 10, ensuring that
velocity and temperature gradients approached zero.
Numerically, it is seen that within a specific range of c,
there are two sets of solutions for different values of A.
Determining an initial estimate for the first solution is
relatively straightforward, as the BVP4C method
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converges to the first solution even with suboptimal
guesses. However, generating a suitably accurate
estimate for the solution becomes challenging in the case
of opposing flow. To address this challenge, we initiate
the process with a group of parameter values that make
the problem easily solvable. Subsequently, we employ
the acquired outcome as the initial estimate for solving
the problem with slight parameter variations. This
process is reiterated until the accurate parameter values
are attained.

5 Asymptotic Analysis
To find a solution to equations (11)-(13) for large
¢, we put

F = c%.‘]-",/l = c_gl*,s = c_%y (37)
and leaving {(s) unsealed. This gives
F'"+XF'F" +FF" -F?+1=0,
{"+PrF{' =0,
F(0)=0,F(0)=1,¢0)=1and
F'->c1{ >0asY > .

(38)

Now using the regular perturbation expression of F and

¢ as

F=Fo+-Fi+,

{=CGo+zb+, (39)

we have the leading order equations

12 _

F' + VFYFY + FoFy — F? =

o + PrFody = 0,
Fo(0) =0,F;(0) =1,{,(0) = 1and
Fo =0, > 0asY — oo, (40)
By setting A* = 0.5 and Pr = 1, a numerical solution of

(40) gives Fy'(0) = —1.316134 and {,(0) = —0.556919,
so that

3
F"(0) ~ —1.316134c2 + -+



1
¢'(0) ~ —0.556919cz + --- for large c. (41)

To verify our analysis, we tabulated the values of

3 1
¢ 2F"(0) and ¢ 2{'(0) against c in Table 1. We observe
that as ¢ increases, the solutions approach their

respective asymptotic limits of -1.316134 and -
0.556919.

Table 1: Asymptotic values of ¢~3/2F"(0) and ¢~*/2¢'(0)

c F"(0) ¢'0) | c™*2F"(0) | cM2'(0)
5 |-12.984637 |-1.359882 | -1.161381 | -0.608202
20 | -115.56896 | -2.542579 | -1.292100 | -0.568538
60 | -608.62809 | -4.342031 | -1.309559 | -0.560554
100 | -1312.3680 | -5.590453 | -1.312368 | -0.559045
200 | -3117.4350 | -7.890453 | -1.314312 | -0.557939

o0 - - -1.316134 | -0.556919

6 Results and Discussion

To validate our results, we compare the values of
F'"(0) (when non-Newtonian parameter A = 0) on the
stretching/shrinking sheet with Ishak et al. [13]. The
detailed comparisons are in Table 2, displaying a strong
concurrence between our results and the cited work.
Also, the values of F''(0) for A =0.3 with different values
of ¢ are tabulated in Table 2. An increase in |c| leads to a
decrease in the values of F/(0) in the first solution, while
it has the opposite effect in the second solution. In Table
2, F''(0) gives two different values for some selected
negative values of ¢, but after crossing the point —1, it
provides only a single value. The point ¢y connects both
solution branches, and when ¢ — —1, no such critical
point exists, and after crossing the point —1, it becomes
a single branch. Our theoretical results are also closely
connected with the above fact, as ¢ » —1,F'"(0) = 0. If
F""(0) > 0, then from (11), it is found that F""'(0) = 0.
Consequently, F''(0) = 0, and all subsequent derivatives
are zero at s = 0, which cannot satisfy the conditions
F'(0) = —1 and F'(o) — 1. Therefore, a unique solution
exists when c¢ > —1, and dual solutions occur for c; <
¢ < —1, and there is no solution for ¢ < c;. The critical
point ¢y for A = 0.1 and 0.3 are —1.24701 and —1.24768
(see Figures 1-2). The solution domain expands with
increasing 4, and ¢y is more negative for the non-Newtonian
case than the Newtonian case, highlighting that A plays a
significant role in the existence of solutions, as
supported by theoretical results. Figure 3 demonstrates
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a significant decrease in the velocity profile F'(s) with
increasing A for both solution branches. It is observed
that the thickness of the momentum boundary layer is
larger for Newtonian fluid than for non-Newtonian fluid.

0.7 | -1.24768 124701 -01,0.3

~~

2

£05

= First solution === Second solution
0.3
-1.248 -1.246 -1.244
c
Figure 1. Effect of A on F''(0).
q
0.043 1=0.1,0.3
-1.24678
-1.24701 /
—_
g
> 0.025 ~
- - ------"""'--—.-
- - - - -
e First solution === Second solution
0.005

-1.248 -1.246 -1.244

c

Figure 2. Effect of A on —{'(0).

The temperature profile for both solutions increases
with the non-Newtonian parameter A (see Figure. 4),
resulting in a rise in the thickness of the thermal
boundary layer. Figure 5 shows that F'(s) decreases in
the first solution but increases in the second solution as
|c| increases. Conversely, {(s) increases with |c| in the
first solution, while decreasing in the second solution
(see Figure 6). The momentum and thermal boundary
layer thicknesses are found to be smaller in the first
solution compared to the second solution. In Figure 7,
F(s) decreases in the first solution but increases in the
second solution as |c| increases. Initially, each curve
shows a decline, reaching certain negative values for
small s. However, these values gradually increase and



become positive beyond a certain distance from the

sheet.

Table 2. Comparison of F''(0) for various values of A and c.

A c Present Ishak [13]
First Solution Second Solution First Solution Second Solution
0 -0.25 1.402240 - 1.402241 -
-0.50 1.495669 - 1.495670 -
-0.75 1.489298 - 1.489298 -
-1 1.328816 0 1.328817 0
-1.15 1.082231 0.116701 1.082231 0.116702
-1.20 0.932473 0.233649 0.932474 0.233650
-1.2465 0.584291 0.554281 0.584295 0.554283
0.3 -0.25 1.254506 - - -
-0.75 1.321493 - - -
-0.9 1.262148 - - -
-1 1.187971 0 - -
-1.12 1.036961 0.064495 - -
-1.18 0.911318 0.163578 - -
-1.22 0.778358 0.283952 - -
-1.24765 0.536212 0.519569 - -
-1.24768 0.528127 0.528547 - -

Table 3: Smallest eigenvalues for different 1

A c First solution Second solution

0.1 | -1.24 | 0.157272 -0.258123
-1.19 | 0.573241 -0.598794
-1.18 | 0.627739 -0.638914

0.3 | -1.24 | 0.016590 -0.348644
-1.21 | 0.341042 -0.571240
-1.20 | 0.405736 -0.618171
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The stability analysis is performed using the
BVP4C function in MATLAB software. The detailed
procedure and calculation are mentioned in Appendix A.
As shown in Table 3, the smallest eigenvalues for both
solutions are computed numerically for different
shrinking parameters c. In the first solution, the
eigenvalues are observed to be real and positive, while in
the second solution, they are negative. Because of the
positive smallest eigenvalues, initial disturbances in the
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fluid flow diminishes over time, that is e %€ - 0 as € —

co. Consequently, the first solutions are determined to be
stable. However, the smallest negative eigenvalue
suggests an amplification of initial disturbances in the
flow, given by e ®€ — oo indicating that the flow
solutions (second solution) exhibit unstable behavior.
The stable solution is physically meaningful for the
above flow, whereas the unstable solution is not.

7 Conclusion

The research delved into the boundary layer
stagnation-point flow and convective heat transfer on a
linearly stretching/shrinking surface in non-Newtonian
Williamson fluid. A suitable similarity transformation is
employed to convert the PDEs into nonlinear ODEs for
modelling purposes. The application of the shooting
method illustrates the existence of a solution and
examines its characteristics. The numerical solution for
this study is acquired by implementing the shooting-
based numerical code in MATLAB, specifically using the
BVP4C solver. Furthermore, a connection has been
established between theoretical results and numerical
investigations. A temporal stability analysis is conducted
to identify a stable solution, providing insight into the
primary flow dynamics. The main findings of this study
can be outlined as follows
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The existence of a unique solution to the
nonlinear equation is proved for the
stretching/shrinking parameter ¢ € (—1, o).
Dual solutions exist for ¢ € [c;, —1], and there
does not exist any solution for ¢ € (—oo, cy).

The velocity profile F'(s) decreases with non-
Newtonian parameter A in both solution
branches, whereas the temperature profile {(s)
increases with 4.

In the first solution branch, the boundary layer
thickness (for both momentum and thermal) is
smaller compared to the second solution branch.
Additionally, the solution domain expands with
increasing 4.

Stability analysis indicates that the first solution
branch is physically acceptable, as all the
smallest eigenvalues are positive, whereas the
second solution branch is unstable.

An asymptotic solution for large ¢ > 0 shows
that the expressions F"(0)~ — 1.316134 c3/?
and ¢'(0) ~ —0.556919 c/?2 as ¢ — oo.

Appendix A

A study on temporal stability is conducted
using the foundational research of Merkin [16], who
identified potential practical unreliability in the
lower branch. To achieve this, we consider the time-
varying representation of equations (11)-(12)

0%u N Zrau 0%u
dy?

Ju du Jdu
dy dy?

Uo
(at +v6y+u6x)

p

10p

p 0x’

koo
 pey dy?’

<6T N oT N
at " oy

6T>
u 0x

Due to the presence of a time variable, we introduce
the following new dimensionless variable

(A1)

v = bxF'(s,€),v = —VbVF(s,€), T = T,, + (T,, —

T ){(s,€),and € = bt, where s = \/%y. (A2)
Here, € represents the updated non-dimensional time
parameter. Employing € refers to an initial value



challenge, raising the query of which solution holds
physical validity. By using (A2), from (A1), we get

F" +1+AF"F" + FF"' —F2—F/ =0,
{" +PrF{' — Pr{. =0, (A3)

where, ' denotes the derivative concerning s and
superscript € represents derivative with respect to €. The
boundary conditions for the above time dependent flow
are

F(0,e) =0,F'(0,e) = ¢,F'(c0,€6) - 1,{(0,¢) =
1,{(c0,€) = 0. (A4)

To assess the stability of the steady flow solution,
F(s) = F, and {(s) = {, satisfy equations (11)-(12), a
group of perturbed equations is examined to facilitate
the separation of variables

F(s,€) = Fo(s) + e"“M(s,€),{(s,€) = {o(s)
+e “EN(s,€). (A5)

Here, w is an unknown eigenvalue, and both F (s, €)
and {(s,€) are significantly smaller than F, and (.
Solving the eigenvalue problem (A4)-(A5) provides a
series of eigenvalues w; < w; < w3 <. If w; is
negative, it implies initial disturbance growth, indicating
flow instability. Conversely, when w; is positive, there is
initial decay, signifying flow stability. Substituting (A5)
into (A3)-(A4) and leads to the following linearized
problem

M'"" + AFy'M"" + AF)'M" — 2FgM’ + FoM"' + MFy'
+wM' — M =0,
—N" + FgN' + M{; + wN — N = 0,
M(0,¢) =0,M'(0,e) =0,N(0,¢) =0,
M'(c0,€) = 0,N(o0,€) — 0. (A6)
Now, we are putting € = 0 for check the stability of
steady state solution and considering M(s,0) = My(s)
and N(s,0) = Ny(s), then equations (A6) become
My + AFy MY + AFy "My — 2FyMy + FoM{

+MoFy + wM) = 0,

—-Ng' + FoN§ + MoZ5 + wNo = 0,
M, (0) = 0, My(0) = 0,Ny(0) = 0, My(0) - 0,
Ny (c0) — 0. (A7)

Solving equations (A7) numerically, one can easily get
the smallest eigenvalue. See [24] for a detailed
explanation of determining the smallest eigenvalue. To
solve it, we need an additional boundary condition.
Therefore, without loss of generality, we take My (0) =
1.
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