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Abstract - Since non-Newtonian fluids are often encountered in 

engineering devices, the nonlinear boundary layer equations 

governing the flow and heat transfer properties of a non-

Newtonian Williamson fluid over a stretching (𝑐 > 0) or 

shrinking (𝑐 < 0) sheet near the stagnation point are analyzed 

using two closely interrelated approaches. First, employing the 

shooting argument, it is proved that a unique solution exists when 

𝑐 ∈  (−1,∞) and second, using the BVP4C solver in MATLAB, 

two different solution branches are reported on the interval 
[𝑐𝑇 , −1], where 𝑐𝑇 is the bifurcation point. The 𝑐𝑇 values become 

more negative with increasing values of the Williamson parameter 

λ, marking the broadening of the solution range. Furthermore, the 

first solution branch continues for large positive values of 𝑐, 
whereas the second branch seems to cease at 𝐹′′(0) = 0 as 𝑐 →
−1. The smallest eigenvalue computed using temporal stability 

analysis of these solutions is found to be positive for the first 

branch, indicating that this branch is physically stable. These 

findings are relevant to various industrial processes involving non-

Newtonian fluids, such as polymer processing and coating 

applications. Finally, an asymptotic expression is derived to 

provide insights into the behavior of large 𝑐. 
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1. Introduction 
It is common knowledge that many industrial (such 

as paints and coatings) and physiological (such as blood 
and plasma) fluids exhibit complex flow behavior that 
the classical Newtonian fluid model cannot adequately 

describe. To gain a better understanding of such fluids, 
numerous models (non-Newtonian) have been 
suggested over the years to take into account the unique 
characteristics of these fluids, including their viscoelastic 
properties, shear-thinning or shear-thickening behavior, 
and time-dependent responses [1, 2]. The nonlinear 
relationships between the stress tensor and the 
deformation rate tensor for non-Newtonian fluids give 
rise to complex equations. Undoubtedly, it is challenging 
to prove the existence and uniqueness/non-uniqueness 
of a solution to these equations and obtain their 
numerical solution. 

This paper focuses on the robust model put forward 
by Williamson to describe pseudoplastic fluids [3]. A 
large number of published works, for example, the study 
of the flow of a thin layer of pseudoplastic fluid over an 
inclined solid surface [4], the peristaltic flow of chyme in 
the small intestine [5], blood flows through a tapered 
artery with stenosis [6], and some boundary layer flows 
of Williamson fluid [7], to mention a few, demonstrate 
the adequacy of Williamson's model in describing many 
frequently observed industrial and physiological fluids 
like polymer solutions, paints, blood, and plasma. 
Further, one can go through the investigations [8, 9] for 
Williamson fluid flows in various geometries (especially 
stagnation point flow and stretching/shrinking surface) 
under diverse physical conditions. Due to its immense 
engineering and industrial applications, the stagnation-
point flow of a viscous or non-Newtonian fluid has been 
the subject of several investigations [10, 11]. Another 
significant aspect of boundary layer flow involves the 
stretching or shrinking phenomena [12]. 

A review of the literature suggests that the flow 
generated by a shrinking sheet has recently captured the 
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interest of researchers due to its intriguing physical 
characteristics and growing practical implementations. 
Wang [11] introduced the concept of flow resulting from 
a shrinking sheet and showed that the solution is not 
unique to a particular domain. Subsequently, several 
research papers [13-15] have been published addressing  
the shrinking sheet problem. The works mentioned 
above were devoted to finding multiple solutions and 
their stability analysis. Analyzing multiple solutions and 
stability is crucial in engineering analysis as it enables the 
determination of the physical relevance of a steady-state 
solution. In the context of stability analysis, Merkin [16] 
first found that in time-dependent problems of steady-
state flows, only the stable upper branch solution is 
physically possible, as it has the smallest positive 
eigenvalue. In contrast, the unstable lower branch 
solution is not physically relevant. Recent studies in 
references [17, 18] have discussed the stability of 
multiple solutions associated with stretching or 
shrinking surfaces. 

In the last few decades, numerous investigations 
have demonstrated the mathematical proof of the 

existence and uniqueness of solutions in boundary layer 
fluid flow problems. Miklavčič and Wang [19] 
established the existence and uniqueness of the 
similarity solution for the equation describing the flow 
caused by a shrinking sheet with suction. Gorder et al. 
[20] examined the results concerning the existence and 
uniqueness of solutions over the interval [0,∞) for the 
stagnation-point flow of a hydromagnetic fluid over a 
stretching or shrinking sheet. Pallet et al. [10] proved the 
existence and uniqueness of a solution for oblique 
stagnation point flow by using the topological shooting 
argument. However, to the best of the authors' 
knowledge, only a limited number of articles are devoted 
to answering the question of the existence of a unique 
solution, see [21, 22, 23] and the references therein for a 
detailed understanding of the methodology used. 

Motivated by the investigations mentioned above 
and recognizing the widespread applications of 
problems involving stretching/shrinking sheets and 
non-Newtonian fluids in engineering and industries, we 
consider the stagnation point flow of the Williamson 
fluid model over a stretching/shrinking surface here. 
Primarily, the following research questions are 
addressed 

 How can the existence and uniqueness of 
solutions for the stretching/shrinking 
parameter 𝑐 > −1 be mathematically 
established? 

 What is the critical point 𝑐𝑇 , and how does 
the nature of the solution change when 𝑐 <
𝑐𝑇? 

 What are the characteristics of dual 
solutions in the shrinking parameter range 
𝑐𝑇 ≤ 𝑐 ≤ −1? 

 How can a linear stability analysis be 
conducted to identify stable solutions? 

 What are the effects of the non-Newtonian 
parameter 𝜆 and shrinking parameter 𝑐 
(specifically 𝑐 ≤ −1) on the velocity and 
temperature profiles in the dual solution? 

 How do the expressions for shear stresses 
and the Nusselt number behave for large 𝑐 ? 

 
      
          2. Flow Analysis 
 
 The continuity and momentum equations for an 
incompressible Williamson fluid are expressed as 
follows [7] 

Nomenclature 
 
V  Velocity vector 
 
T Temperature 
 
B First Rivlin-Erickson tensor 
 
P Pressure 
 
K Thermal conductivity 
 
cp   Specific heat 

  
C Stretching/ Shrinking  
 
Pr Prandtl number 
 
𝜆   Non-Newtonian parameter 
 
𝐶𝐹       Skin friction coefficient 
 
𝑁𝑢𝑥    Nusselt number  
 
𝜏  Anisotropic viscous stress tensor 
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div 𝐕 = 0 (1)

𝜌
𝑑𝐕

𝑑𝑡
= div(−𝑝𝐈 + 𝜏) + 𝜌𝐟 (2)

 

The energy equation is 

𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝐕 ⋅ ∇𝐓) = ∇ ⋅ 𝑘∇𝐓 (3) 

Here, 𝐕 represents the velocity vector, 𝑻 denotes 
the temperature, 𝜌 stands for density, 𝐟 denotes the body 

force, 
𝑑

𝑑𝑡
 signifies the material time derivative, 𝑝 

represents pressure, 𝑐𝑝 indicates the specific heat, 𝑘 

represent the thermal conductivity and 𝐈 be the identity 
matrix. 𝜏 be anisotropic viscous stress tensor defined as 
[7] 

𝜏 = [𝜇∞ +
𝜇0 − 𝜇∞
1 − Γ𝛾

]𝐁. (4) 

Here 𝜇0 and 𝜇∞ be zero and infinity shear rate 
viscosity, respectively, 𝐁 be the first Rivlin-Erickson 
tensor, Γ be the time constant and 𝛾 is defined as 

𝛾 = √
1

2
trace(𝐁2) (5) 

As in [7], we investigate the circumstance where 𝜇∞ = 0 
and Γ𝛾 < 1. Under this variation, (4) transforms into 

𝜏 = 𝜇0[1 + Γ𝛾]𝐁 (6) 

   Consider a steady, two-dimensional, incompressible 
flow of a Williamson fluid over a horizontal linearly 
stretching/shrinking sheet with no body force. The 
sheet, which coincides with the plane 𝑦 = 0, is assumed 
to be impermeable, so there is no normal velocity across 
its surface. The flow is restricted to the area where 𝑦 >
0. The sheet's velocity is represented by 𝑢𝑤(𝑥) = 𝑝1𝑥, 
where 𝑢𝑒(𝑥) = 𝑏𝑥 (where 𝑏 > 0 ) characterizes the free 
stream velocity. Here, the constant 𝑝1 > 0 represents 
stretching and 𝑝1 < 0 represents shrinking. Let (𝑢, 𝑣) be 
the velocity component in (𝑥, 𝑦) direction and 𝑇 be the 
temperature. Following [7], the boundary layer 
equations are expressed as  

(𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) =

𝜇0
𝜌
(
𝜕2𝑢

𝜕𝑦2
+ 2Γ

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
) −

1

𝜌

𝜕𝑝

𝜕𝑥
, (7) 

and 

(𝑣
𝜕𝑇

𝜕𝑦
+ 𝑢

𝜕𝑇

𝜕𝑥
) =

𝑘

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2
. (8) 

  Relevant boundary conditions for the stagnation point 
flow of Williamson fluid over a stretching/shrinking 
sheet [7] are 

 (𝑢, 𝑣, 𝑇) = (𝑢𝑤, 0, 𝑇𝑤) at 𝑦 = 0,  (9)

(𝑢, 𝑇) → (𝑢𝑒 , 𝑇∞)  as 𝑦 → ∞,  (10)
 

where 𝑇𝑤 and 𝑇∞ are the surface and ambient 
temperature, respectively. Using the Bernoulli equation 

and neglecting the hydrostatic term, −
1

𝜌

𝜕𝑝

𝜕𝑥
= 𝑢𝑒

𝑑𝑢𝑒

𝑑𝑥
 , 

gives  −
1

𝜌

𝜕𝑝

𝜕𝑥
= 𝑏2𝑥.  

  Following the similarity transformations 

 𝑢 = 𝑏𝑥𝐹′(𝑠), 𝑣 = −√𝑏𝜈𝐹(𝑠), 𝑇 = 𝑇𝑤 + (𝑇𝑤 − 𝑇∞)𝜁(𝑠) 

[7], where 𝑠 = √
𝑏

𝜈
𝑦, 

the equations (7)-(8) become 

𝐹′′′ − 𝐹2 + 1 + 𝐹𝐹′′ + 𝜆𝐹′′𝐹′′′ = 0, (11)

𝜁′′ + Pr𝐹𝜁′ = 0, (12)
 

where 𝜆 = 2Γ𝑥√
𝑏3

𝜈
 be the non-Newtonian Williamson 

parameter and Pr =
𝜈𝜌𝑐𝑝

𝑘
 is the Prandtl number. Also, the 

boundary conditions (9)-(10) become 

𝐹(0) = 0, 𝐹′(0) = 𝑐, 𝐹′(∞) → 1, 𝜁(0) = 1, 𝜁(∞) → 0,   

             (13) 

where 𝑐 =
𝑝1

𝑏
 represents the stretching (𝑐 > 0) or shrinking 

(𝑐 < 0) parameter. Wall suction and injection effects are 

neglected in this study (𝐹(0) = 0). 

The coefficient of skin friction 𝐶𝐹 and the Nusselt number 
𝑁𝑢𝑥, which are two crucial physical parameters, are 
outlined below 

𝐶𝐹 =
𝜏𝑥𝑦|𝑦=0

𝜌𝑢𝑒
2 , 𝑁𝑢𝑥 =

𝑥𝑄𝑤
𝑘(𝑇𝑤 − 𝑇∞)

. (14) 
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Here, 𝜏𝑥𝑦 represents the skin friction or shear stress 

along the stretching/shrinking surface, and 𝑄𝑤 denotes 
the heat flux originating from the stretching/shrinking 
surface. These quantities are specified as follows 

𝜏𝑥𝑦 = 𝜇0 (
𝜕𝑢

𝜕𝑦
+ Γ (

𝜕𝑢

𝜕𝑦
)
2

), 

𝑄𝑤 = −𝑘 (
∂𝑇

∂𝑦
) |𝑦=0. 

After using the similarity transformation, equation 
(14) becomes 

𝑅𝑒
1

2𝐶𝐹 = 𝐹
′′(0) +

𝜆

2
𝐹′′(0)2, 

                   𝑅𝑒−
1

2𝑁𝑢𝑥 = −ζ
′(0),                            (15) 

where 𝑅𝑒 = √
𝑏𝑥2

𝜈
 is the Reynolds number. 

3. Existence and uniqueness results for 𝒄 > −𝟏 

3.1 Existence for 𝑭(𝒔)  
The existence of a solution for the boundary value 

problem in equations (11)-(13) is analyzed using the 
topological shooting method. This method entails the 
investigation of a corresponding group of initial value 
problems (IVP), denoted as the ODEs (11) and (13) 
(except the condition at ∞ ), in conjunction with an 
additional initial condition specified as 𝐹′′(0) = 𝑎, 
where 𝑎 can take any arbitrary values. Then, the solution 
of the IVP depends on both 𝑠 and 𝑎 and is denoted as 
𝐹(𝑠; 𝑎). Although each 𝑎 yields a solution for the IVP, not 
all these solutions will satisfy the boundary conditions 
(13). Therefore, it is necessary to determine a suitable 
value for 𝑎 that satisfies the condition at ∞. To prove the 
existence of a solution, the range 𝑐 > −1 is divided into 
two parts: −1 < 𝑐 ≤ 1 and 𝑐 > 1. For 𝑐 = 1, the identity 
function 𝐹(𝑠) = 𝑠 is a solution of (11). In this case 
𝐹′′(0) = 𝑎 = 0 for all 𝑠, therefore, we did not consider 
the case 𝑐 = 1 in our proof.  

3.1.1 Existence Proof for −𝟏 < 𝒄 < 𝟏  

Let us assume two sets 𝑃 and 𝑄 are subsets of (0,∞), 
defined by  

𝑃 = {𝑎 > 0: ∃𝑠1 > 0 such that 𝐹′′(𝑠1; 𝑎) = 0 and 𝑐

< 𝐹′(𝑠; 𝑎) < 1 for 𝑠 ∈ (0, 𝑠1]},  

𝑄 = {𝑎 > 0: ∃𝑠1 > 0 such that 𝐹′(𝑠1; 𝑎) = 1 and 0 <

                              𝐹′′(𝑠; 𝑎) < 𝑎 𝑓𝑜𝑟 𝑠 ∈ (0, 𝑠1]}.            (16)   

Lemma 1. 𝑃 and 𝑄 are open sets with no elements in 

common. 

Proof: Clearly 𝑃 and 𝑄 have no element in 
common. Let 𝑎1 ∈ 𝑃 then ∃ 𝑠1 > 0 such that 𝐹′′(𝑠1; 𝑎1) =
0 and 𝑐 < 𝐹′(𝑠; 𝑎1) < 1 for 𝑠 ∈ (0, 𝑠1]. Since 𝐹′′′(𝑠1; 𝑎1) =

(𝐹′(𝑠1; 𝑎1))
2
− 1 ≠ 0, therefore, using the property of 

continuous functions ∃ a neighborhood of 𝑎1 such that 
for all points in the neighborhood, 𝐹′′′(𝑠) have the same 
sign as 𝐹′′′(𝑠1; 𝑎1). Thus 𝐹′′(𝑠) has a root with 𝑐 <
𝐹′(𝑠) < 1. This shows that 𝑃 is an open set. Similarly, one 
can prove that 𝑄 is open as well. 

Lemma 2. 𝑃 is non-void. 

Proof: We claim that when 𝑎 is very small, it is in 
𝑃. Let 𝑎 = 0, then 𝐹′′′(0; 𝑎) < 0 for all 𝑎. Thus, in a small 
enough vicinity around 𝑠 = 0, it holds that 𝐹′′(𝑠; 0) < 0 
and 𝐹′(𝑠, 0) < 1. Then, through the continuous solutions 
of the IVP, along with its initial conditions, there is a 
positive number 𝑎 for which 𝐹′′(𝑠; 𝑎) < 0 and 𝐹′(𝑠; 𝑎) <
1 hold for all values of 𝑠 in the vicinity of 𝑠 = 0. But 
𝐹′′(0; 𝑎) = 𝑎 > 0, implies ∃ a 𝛿 > 0 such that 𝐹′′(𝛿; 𝑎) =
0 and 𝐹′(𝑠; 𝑎) < 1 for 𝑠 ∈ (0, 𝛿]. Hence for small 𝑎 (> 0), 
it is in 𝑃. 

Lemma 3. 𝑄 is non-void. 

Proof: We claim that when 𝑎 is very large, it is in 𝑄, 
that is 𝐹′ = 1 in (0,1] strictly before 𝐹′′ = 0. If this is not 
the case, then the following possibilities must occur : (i) 
𝐹′′(𝑠; 𝑎) = 0 for some point in (0,1] for which 𝐹′(𝑠; 𝑎) <
1, (ii) 𝐹′′(𝑠; 𝑎) > 0 and 𝐹′(𝑠; 𝑎) < 1 in (0,1], and (iii) 
𝐹′′(𝑠; 𝑎) = 0 and 𝐹′(𝑠; 𝑎) = 1 occur concurrently. If 
possible, let ∃ 𝑐1 ∈ (0,1] such that 𝐹′′(𝑐1; 𝑎) = 0 with 
𝑐1 < 𝐹

′(𝑠; 𝑎) < 1 for 𝑠 ∈ (0, 𝑐1]. By integrating, we get 

𝑐1𝑠 < 𝐹(𝑠; 𝑎) < 𝑠. Now let 𝐹‾ = ∫  
𝑠

0

𝐹

1+𝜆𝐹′′
𝑑𝑡 and 

integrating (11) from 0 to 𝑠, we get  
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𝐹′′(𝑠)𝑒𝐹‾(𝑠) − 𝐹′′(0)𝑒𝐹‾(0) = ∫  
𝑠

0

 
1 − 𝐹′2

1 + 𝜆𝐹′′
𝑑𝑡, (17)

 ⟹ 𝐹′′(𝑠)𝑒𝐹‾(𝑠) = 𝑎 +∫  
𝑠

0

 
1 − 𝐹2

1 + 𝜆𝐹′′
𝑑𝑡. (18)

 

Let 𝐻 =
1−𝐹′2

1+𝜆𝐹′′
𝑑𝑡 > 0, then from (18) we have 

𝐹′′(𝑠)𝑒𝐹‾(𝑠) = 𝑎 + 𝐻𝑠. (19) 

Then for 𝑠 ∈ (0, 𝑐1] 

𝐹′′(𝑠) ≥ (𝑎 + 𝐻)𝑒−𝐹‾(𝑠). (20) 

Thus, for large 𝑎, 𝐹′′(𝑠; 𝑎) > 0 for all 𝑠, leading to a 
contradiction. Similarly, it can be shown that the second 
statement cannot occur for sufficiently large values of 𝑎. 
If the third case occurs, then from (11), we get 
𝐹′′′(𝑠; 𝑎) = 0. That implies that 𝐹′(𝑠) = 1, which 
contradicts the fact that 𝐹′(0) = 𝑐 ≠ 1. Therefore, 
sufficiently large 𝑎 belongs to 𝑄. 

Theorem 1. For any 𝜆 ≥ 0, equations (11) and (13) have a 

solution. Also, the solution is monotone in nature. 

Proof: As (0,∞) is a connected set, and both 𝑃 and 
𝑄 are non-empty, open, and disjoint from each other, it 
follows from the definition of a connected set that the 
union of 𝑃 and 𝑄 cannot be equal to (0,∞). Therefore 
∃ 𝑙 > 0 such that 𝑙 ∉ 𝑃 and 𝑙 ∉ 𝑄. Also, Lemma 3 implies 
that 𝐹′′(𝑠; 𝑙) = 0 and 𝐹′(𝑠; 𝑙) = 1 do not occur 
simultaneously. Consequently, there is only one 
possibility that 𝐹′′(𝑠; 𝑙) > 0 and 𝑐 ≤ 𝐹′(𝑠; 𝑙) < 1 ∀𝑠. 
Now, from equation (11), it is observed that as 𝐹′(∞; 𝑙) 
approaches 1, implies the existence of a monotonically 
increasing solution to the boundary value problem (11), 
(13). 

3.1.2 Existence Proof for 𝑐 > 1 

Let us assume two sets 𝑈 and 𝑉 are subsets of 
(−∞, 0), defined by 

𝑈 = {𝑎 < 0:  ∃ 𝑠1′ > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹′′(𝑠1′; 𝑎) = 0 𝑎𝑛𝑑 1 <
𝐹′(𝑠; 𝑎) < 𝑐 𝑓𝑜𝑟 𝑠  ∈  (0, 𝑠1′]}, 

𝑉 = {𝑎 < 0:  ∃ 𝑠1′ > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹′(𝑠1′; 𝑎) = 1 𝑎𝑛𝑑  𝑐 <
𝐹′′(𝑠; 𝑎) < 0 𝑓𝑜𝑟 𝑠  ∈  (0, 𝑠1′]}. 

As mentioned in the previous subsection, we will 
show the same properties (Lemma 1-3) of the sets 𝑈 and 
𝑉. To show 𝑈 and 𝑉 are open is the same as the previous 
proof, so we skip this. To prove 𝑈 is non-void, we will 
show that if 𝑎 < 0 and |𝑎| is very small, it belongs to 𝑈. 
Now, from (13), first we take 𝑎 = 0 and subsequently, at 
𝑠 = 0, 

𝐹′′′(0; 0) = (𝑐 + 1)(𝑐 − 1) > 0 as 𝑐 > 1, (21)

𝐹′′(0; 0) = 0 and 𝐹′(0; 0) = 𝑐 > 1. (22)
 

So we can say that if 𝑠 is close to 0 then 𝐹′′(𝑠; 0) > 
0 and 𝐹′(𝑠; 0) > 1. By continuous solution of the IVP, for 
𝑎 ≠ 0 with sufficiently small magnitude, it is evident that 
𝐹′(𝑠; 𝑎) will be close to 𝐹′(𝑠; 0). Specifically, 𝐹′(𝑠; 𝑎) > 1 
with 𝐹′′(𝑠; 𝑎) ≥ 0, but 𝐹′′(0; 𝑎) < 0 based on equation 
(13). This implies that there exists 𝑠0 > 0 where 
𝐹′′(𝑠0; 𝑎) = 0, and 𝐹′(𝑠; 𝑎) > 1 whenever 𝑠 ≤ 𝑠0, 
showing that the set 𝑈 is non-empty. 

Next, we will prove that 𝑉 is non-empty. For that, 
first, we integrate equation (11) from 0 to 𝑠 which gives 

𝐹′′ =
𝑎 − 𝑠 + 2∫  

𝑠

0
 𝐹′2𝑑𝑠 − 𝐹𝐹′ + 𝜆

𝑎2

2

1 + 𝜆
𝐹′′

2

. (23) 

We claim that for large 𝑎, it is in 𝑉. If possible, let 
the statement mentioned above be false, then at least one 
among the following options is necessary: (i) 𝐹′′(𝑠; 𝑎) =
0 at some point in (0,1] with 𝐹′(𝑠; 𝑎) > 1. (ii) 𝐹′′(𝑠; 𝑎) <
0 and 𝐹′(𝑠; 𝑎) > 1 for all 𝑠 in (0,1]. (iii) 𝐹′′(𝑠; 𝑎) = 0 and 
𝐹′(𝑠; 𝑎) = 1 occurs at the same time. Now, we need to 
refute each of these statements. Starting with (i), let us 
assume that ∃𝑐2 such that 𝐹′′(𝑐2; 𝑎) = 0 with 1 <
𝐹(𝑠; 𝑎) < 𝑐 for 𝑠 ≤ 𝑐1. After integrating, we have 𝑠 <
𝐹′(𝑠; 𝑎) < 𝑐𝑠. From (23), we can write 

𝐹′′ ≤
𝑎 (1 +

𝑎𝜆

2
)

1 +
𝜆𝐹′′

2

+
2∫  

𝑠

0
 𝐹2𝑑𝑠

1 +
𝜆𝐹′′

2

. (24) 

We are establishing some inequalities to find the 

bounds of 𝐹′′ : (a) since 1 +
𝜆𝑎

2
≥ 1 +

𝜆𝐹′′

2
, implies that 

𝑎(1+
𝑎𝜆

2
)

1+
𝜆𝐹′′

2

≤ 𝑎, (b) For 0 < 𝑠 < 1 implies that 2∫  
𝑠

0
𝐹′2𝑑𝑠 ≤
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2𝑐2, also 
1

1+
𝜆𝐹′′

2

≤ 1 implies that 
2∫  

𝑠

0
 𝐹′2𝑑𝑠

1+
𝜆𝐹′′

2

≤ 2𝑐2. After 

applying the inequalities (a)-(b) in (24), we have 

𝐹′′ ≤ 𝑎 + 2𝑐2 (25) 

Now, if we assume that 𝑎 < −2𝑐2, then (25) gives 
𝐹′′ < 0, which is a contradiction. So (i) can not happen. 
Similarly, if we take 𝑎 < −𝑐 − 2𝑐2, then (ii) can not 
happen. If (iii) occurs, then from (13) we have 𝐹′′(𝑠) = 0 
implying that 𝐹′(𝑠) = 1 which contradicts the existence 
theorem of IVP as 𝐹′(0) = 𝑐 > 1. Hence, if 𝑎 < −𝑐 − 2𝑐2, 
then 𝐹′(𝑠; 𝑎) = 1 before 𝐹′′(𝑠; 𝑎) = 0, implies 𝑎 ∈ 𝑉 and 
𝑉 is non-empty. 

The sets 𝑈 and 𝑉 are non-empty, open, and 
mutually exclusive. Since (−∞, 0) is a connected set, 
therefore 𝑈 ∪ 𝑉 ≠ (−∞, 0). Hence, there exists 𝑎∗ that is 
not in 𝑈 or 𝑉. For that particular value of 𝑎∗, the only 
option is 𝐹′′(𝑠; 𝑎∗) < 0 and 1 < 𝐹′(𝑠; 𝑎∗) < 𝑐 for 𝑠 > 0. 
Therefore 𝐹′(∞, 𝑎∗) → 𝑚 (finite). Now, from (11), we get 
𝑚 = 1 which completes the proof. 

3.1.3 Uniqueness Proof for −𝟏 < 𝒄 ≤ 𝟏 

Theorem 2. For any 𝜆 ≥ 0, the solution is unique. 

Proof: We will prove this theorem by using the 
method of contradiction. Let us assume that ∃ 𝑎1, 𝑎2 
(values of 𝐹′′(0)) such that 𝐹(𝑠; 𝑎1) and 𝐹(𝑠; 𝑎2) are the 
corresponding solutions. Apply MVT on the function 𝐹′ 
in the interval [𝑎1, 𝑎2] and as 𝑠 → ∞ then ∃ 𝑎∗ ∈ [𝑎1, 𝑎2] 

such that 
𝜕𝐹′

𝜕𝑎
(∞, 𝑎∗) = 0. Next, let 

𝜕𝐹′

𝜕𝑎
= 𝑤′(𝑠; 𝑎) and 

differentiating (11) and using the boundary conditions 
(13), we have 

   𝑤′′′ − 2𝐹′𝑤′ + 𝜆(𝑤′′′𝐹′′ + 𝐹′′′𝑤′′) + (𝐹′𝑤′ + 𝐹𝑤′′) =

0,                                                                                               (26) 

with                                              

 𝑤(0) = 0,𝑤′(0) = 0,𝑤′′(0) = 1, 𝑤′′′(0) =
−𝜆𝐹′′′(0)

1+𝜆𝑎
.   

                                                                                                 (27) 

Further differentiating (26), we have  

𝑤𝑖𝑣(1 + 𝜆𝐹′′) + 2𝜆𝐹′′′𝑤′′′ + 𝜆𝑤′′𝐹𝑖𝑣 − 𝐹′′𝑤′ + 𝐹𝑤′′ =

0.                                                                                             (28) 

 

Now, from (27), we can say that ∃ 𝑠1 > 0 such that  
𝑤′(𝑠; 𝑎) > 0,𝑤′′(𝑠; 𝑎) > 0,𝑤′′′(𝑠; 𝑎) < 0 for 𝑠 < 𝑠1. 
Specifically, the function 𝑤′(𝑠; 𝑎) is convex downwards, 
initially increasing, and it has a maximum value to reach 
zero. Let the maximum value occur at 𝑠2. Consequently, 
𝑤′′′(𝑠2; 𝑎) = 0 and 𝑤𝑖𝑣(𝑠; 𝑎) ≤ 0 for 𝑠 < 𝑠2. Also, 
𝑤𝑖𝑣(𝑠2) = 0. But equation (28) implies 

          𝑤𝑖𝑣(𝑠2) =
1

1+𝜆𝐹′′(𝑠2)
(−2𝜆𝑤′′′(𝑠2)𝐹

′′′(𝑠2) +

𝐹′′(𝑠2)𝑤
′(𝑠2)) > 0,                                                       (29) 

a contradiction. However, up until the point 𝑠2, 𝑤(𝑠; 𝑎) 
and all its derivatives up to 𝑤′′′(𝑠; 𝑎) are growing 
positively. Hence, 𝐹(𝑠; 𝑎) and all its derivatives up to 
𝐹′′′(𝑠; 𝑎) are increasing functions. Therefore, for any 𝑎 in 
the interval [𝑎1, 𝑎2], 𝑤

′(𝑠2, 𝑎) ≠ 0 which contradicts the 
MVT of 𝐹′. Hence, the proof is complete. 

3.1.4 Uniqueness Proof for 𝒄 > 𝟏 

The proof part is similar to Theorem 2. As in 
Theorem 2, we define 𝑤, which satisfies the equation 
(30) and the boundary conditions 𝑤(0) = 0,𝑤′(0) =
0,𝑤′′(0) = 1. Here, we observe that 𝑤 and 𝑤′ are first 
positive and increasing. Suppose there exist two 
solutions corresponding to 𝑎1

∗ < 𝑎2
∗ < 0 (values of 

𝐹′′(0)). We first prove that 𝑤′ cannot have a maximum 
value. If possible, suppose that 𝑤′ has a maximum at 𝑠2

∗ 
and at this point, we get 𝑤(𝑠2

∗) > 0,𝑤′(𝑠2
∗) >

0,𝑤′′(𝑠2
∗) = 0 and 𝑤′′′(𝑠2

∗) < 0. Moreover, for 𝑠 < 𝑠2
∗, we 

have 

1 < 𝐹′(𝑠; 𝑎1
∗) ≤ 𝐹′(𝑠; 𝑎) ≤ 𝐹′(𝑠; 𝑎2

∗) (30)

𝐹′′(𝑠; 𝑎1
∗) ≤ 𝐹′′(𝑠; 𝑎) ≤ 𝐹′′(𝑠; 𝑎2

∗) < 0, (31)
 

Now from (30), we get 

𝑤′′′(𝑠2
∗) =

1

1 + 𝜆𝐹′′(𝑠2
∗)
[𝐹′(𝑠2

∗)𝑤′(𝑠2
∗) 

𝜆𝐹′′′(𝑠2
∗)𝑤′′(𝑠2

∗) − 𝐹(𝑠2
∗)𝑤′′(𝑠2

∗)] > 0               (32) 

which contradicts that 𝑤′′′(𝑠2
∗) < 0. Therefore, 𝑤′ 

cannot have a maximum, and a positive 𝐿 and 𝑠3 exists 
for which 𝑤′ is greater than 𝐿 for all 𝑠 beyond 𝑠3. 
Applying MVT, we can write for 𝑎1

∗ < 𝑎∗∗ < 𝑎2
∗  

𝐹′(𝑠; 𝑎2
∗) − 𝐹′(𝑠; 𝑎1

∗) = (
𝜕𝐹′

𝜕𝑎
)
𝑎=𝑎∗∗

= (𝑎2
∗ − 𝑎1

∗) (33) 
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As 𝑠 → ∞ in (33) gives a contradiction (left-hand side is 
0 and right-hand side is always positive), demonstrating 
that for 𝑐 > 1, there cannot be two solutions. 

3.2 Existence for 𝜁(𝑠) : 

Theorem 3. If 𝜁(𝑠) is a twice differentiable function 
satisfying (12) with boundary condition (13), then 𝜁(𝑠) 
is of the form 

𝜁(𝑠) =
∫  
∞

𝑠
  (𝑒−∫  

𝑠

0
 𝑃𝑟𝐹𝑑𝑠) 𝑑𝑠

∫  
∞

0
  (𝑒−∫  

𝑠

0
 𝑃𝑟𝐹𝑑𝑠) 𝑑𝑠

.     [24] (34) 

4 Numerical Solution 

In this section, we are solving (11)-(13) 
numerically by the BVP4C solver in MATLAB. Now, 
equations (11)-(13) can be written as a system of first-
order initial value problems. For that let 𝐹 = 𝑦1, 𝐹

′ =
𝑦2, 𝐹

′′ = 𝑦3, 𝜁 = 𝑦4, 𝜁
′ = 𝑦5 then from (11)-(13), we can 

obtain 

𝑦1
′ = 𝑦2
𝑦2
′ = 𝑦3

𝑦3
′ =

𝑦2
2 − 𝑦1𝑦3 − 1

1 + 𝜆𝑦3
𝑦4
′ = 𝑦5
𝑦5
′ = −Pr𝑦1𝑦5 }

  
 

  
 

(35) 

with 

𝑦1(0) = 0
𝑦2(0) = 𝑐
𝑦2(∞) = 1
𝑦4(0) = 1
𝑦4(∞) = 0}

 
 

 
 

(36) 

Now, we can solve equation (35) along with the 
boundary conditions (36). To obtain the value of 𝑠∞we 
need to choose initial values and use them to solve for 
𝐹′′, 𝐹′, 𝐹, 𝜁′ and 𝜁. The MATLAB solver BVP4C was 
employed with a mesh of 400 points, a relative tolerance 
of  10−6 , and an absolute tolerance of 10−8. The far-field 
boundary was truncated at 𝑠∞ = 10, ensuring that 
velocity and temperature gradients approached zero. 
Numerically, it is seen that within a specific range of 𝑐, 
there are two sets of solutions for different values of 𝜆. 
Determining an initial estimate for the first solution is 
relatively straightforward, as the BVP4C method 

converges to the first solution even with suboptimal 
guesses. However, generating a suitably accurate 
estimate for the solution becomes challenging in the case 
of opposing flow. To address this challenge, we initiate 
the process with a group of parameter values that make 
the problem easily solvable. Subsequently, we employ 
the acquired outcome as the initial estimate for solving 
the problem with slight parameter variations. This 
process is reiterated until the accurate parameter values 
are attained. 

5 Asymptotic Analysis 

To find a solution to equations (11)-(13) for large 
𝑐, we put 

𝐹 = 𝑐
1

2ℱ, 𝜆 = 𝑐−
3

2𝜆∗, 𝑠 = 𝑐−
1

2𝒴 (37) 

and leaving 𝜁(𝑠) unsealed. This gives 

ℱ′′′ + 𝜆∗ℱ′′ℱ′′′ + ℱℱ′′ − ℱ′2 + 1 = 0, 

𝜁′′ + Prℱ𝜁′ = 0, 

ℱ(0) = 0, ℱ′(0) = 1, 𝜁(0) = 1 and  

ℱ′ → 𝑐−1, 𝜁′ → 0 as 𝒴 → ∞.                                  (38) 

Now using the regular perturbation expression of ℱ and 
𝜁 as 

                              ℱ = ℱ0 +
1

𝑐
ℱ1 +⋯, 

                   𝜁 = 𝜁0 +
1

𝑐
𝜁1 +⋯  ,                               (39) 

we have the leading order equations 

ℱ0
′′′ + 𝜆∗ℱ0

′′ℱ0
′′′ + ℱ0ℱ0

′′ − ℱ0
′2 = 0, 

                      𝜁0
′′ + Prℱ0𝜁0

′ = 0, 

 ℱ0(0) = 0, ℱ0
′(0) = 1, 𝜁0(0) = 1 and  

ℱ0
′ → 0, 𝜁0

′ → 0 as 𝒴 → ∞.                                                  (40) 

By setting 𝜆∗ = 0.5 and Pr = 1, a numerical solution of 
(40) gives ℱ0

′′(0) = −1.316134 and 𝜁0
′(0) = −0.556919, 

so that 

𝐹′′(0) ∼ −1.316134𝑐
3

2 +⋯ 
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𝜁′(0) ∼ −0.556919𝑐
1

2 +⋯  for large 𝑐.             (41) 

To verify our analysis, we tabulated the values of 

𝑐−
3

2𝐹′′(0) and 𝑐−
1

2𝜁′(0) against 𝑐 in Table 1. We observe 
that as 𝑐 increases, the solutions approach their 
respective asymptotic limits of -1.316134 and -
0.556919. 

Table 1: Asymptotic values of  𝑐−3/2𝐹′′(0) and 𝑐−1/2𝜁′(0) 

 

 

6 Results and Discussion 
To validate our results, we compare the values of 

𝐹′′(0) (when non-Newtonian parameter 𝜆 = 0) on the 
stretching/shrinking sheet with Ishak et al. [13]. The 
detailed comparisons are in Table 2, displaying a strong 
concurrence between our results and the cited work. 
Also, the values of 𝐹′′(0) for 𝜆 =0.3 with different values 
of 𝑐 are tabulated in Table 2. An increase in |c| leads to a 
decrease in the values of 𝐹′′(0) in the first solution, while 
it has the opposite effect in the second solution. In Table 
2, 𝐹′′(0) gives two different values for some selected 
negative values of 𝑐, but after crossing the point −1, it 
provides only a single value. The point 𝑐𝑇 connects both 
solution branches, and when 𝑐 → −1, no such critical 
point exists, and after crossing the point −1, it becomes 
a single branch. Our theoretical results are also closely 
connected with the above fact, as 𝑐 → −1,𝐹′′(0) ≥ 0. If  
𝐹′′(0) > 0, then from (11), it is found that 𝐹′′′(0) = 0.  
Consequently, 𝐹′′(0) = 0, and all subsequent derivatives 
are zero at 𝑠 = 0, which cannot satisfy the conditions 
𝐹′(0) = −1 and 𝐹′(∞) → 1. Therefore, a unique solution 
exists when  𝑐 > −1, and dual solutions occur for 𝑐𝑇 ≤
𝑐 ≤ −1, and there is no solution for 𝑐 < 𝑐𝑇 . The critical 
point 𝑐𝑇 for λ = 0.1 and 0.3 are −1.24701 and −1.24768 
(see Figures 1-2). The solution domain expands with 

increasing 𝜆, and 𝑐𝑇 is more negative for the non-Newtonian 

case than the Newtonian case, highlighting that 𝜆 plays a 

significant role in the existence of solutions, as 
supported by theoretical results. Figure 3 demonstrates 

a significant decrease in the velocity profile 𝐹′(𝑠) with 
increasing 𝜆 for both solution branches. It is observed 
that the thickness of the momentum boundary layer is 
larger for Newtonian fluid than for non-Newtonian fluid.  

 

 

Figure 1. Effect of 𝜆 on 𝐹′′(0). 

 
Figure 2. Effect of  𝜆 on −𝜁′(0). 

 

   The temperature profile for both solutions increases 
with the non-Newtonian parameter 𝜆 (see Figure. 4), 
resulting in a rise in the thickness of the thermal 
boundary layer. Figure 5 shows that 𝐹′(𝑠) decreases in 
the first solution but increases in the second solution as 
|𝑐| increases. Conversely, 𝜁(𝑠) increases with |𝑐| in the 

first solution, while decreasing in the second solution 
(see Figure 6). The momentum and thermal boundary 
layer thicknesses are found to be smaller in the first 
solution compared to the second solution. In Figure 7, 
𝐹(𝑠) decreases in the first solution but increases in the 
second solution as |𝑐| increases. Initially, each curve 
shows a decline, reaching certain negative values for 
small 𝑠. However, these values gradually increase and 

𝑐 𝐹′′(0) 𝜁′(0) 𝑐−3/2𝐹′′(0) 𝑐−1/2𝜁′(0) 
5 
20 
60 
100 
200 
   
∞ 

-12.984637 
-115.56896 
-608.62809 
-1312.3680 
-3117.4350 
        
         - 

-1.359882 
-2.542579 
-4.342031 
-5.590453 
-7.890453 
       
        - 

-1.161381 
-1.292100 
-1.309559 
-1.312368 
-1.314312 
 
-1.316134 

-0.608202 
-0.568538 
-0.560554 
-0.559045 
-0.557939 
 
-0.556919 
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become positive beyond a certain distance from the 
sheet.  

 

 
 
 

Table 2. Comparison of 𝐹′′(0) for various values of 𝜆 and 𝑐. 
 
 
 
 
 

 

 

 
 

 

Table 3:   Smallest eigenvalues for different 𝜆 

 
 

  
                    

 

 

 

 

𝜆 𝑐 Present Ishak [13] 

First Solution Second Solution First Solution Second Solution 
0 -0.25 

-0.50 
-0.75 
-1                      
-1.15             
-1.20 
-1.2465 

1.402240 
1.495669 
1.489298 
1.328816 
1.082231 
0.932473 
0.584291 

-                                       
-                                         
-                                              
0                           

0.116701    
0.233649    
0.554281 

1.402241 
1.495670 
1.489298 
1.328817 
1.082231 
0.932474 
0.584295 

-                                       
-                                         
-                                              
0                           

0.116702    
0.233650    
0.554283 

0.3 -0.25 
-0.75             
-0.9                  
-1                      
-1.12 
-1.18          
 -1.22                    
-1.24765                 
-1.24768 

1.254506 
1.321493 
1.262148 
1.187971 
1.036961 
0.911318 
0.778358                             
0.536212 
0.528127 

-                                       
-                                         
-                                                                                 
0                           

0.064495    
0.163578    
0.283952                             
0.519569                               
0.528547 

-                                       
-                                         
-                               
-                                       
-                                         
-                                      
-                                        
-                                      
- 

-                                       
-                                         
-                               
-                                       
-                                         
-                                      
-                                             
-                                           
- 

𝜆     𝑐 First solution Second solution 
 0.1 -1.24 

-1.19 
-1.18 

0.157272 
0.573241 
0.627739 

-0.258123 
-0.598794 
-0.638914 
 

0.3 -1.24 
-1.21 
-1.20 

0.016590 
0.341042 
0.405736 

-0.348644 
-0.571240 
-0.618171 
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Figure. 3: Effect of 𝜆 on  𝐹′(𝑠). 

 
 

 
                                Figure. 4: Effect of 𝜆 on 𝜁(𝑠). 
 

The stability analysis is performed using the 
BVP4C function in MATLAB software. The detailed 
procedure and calculation are mentioned in Appendix A. 
As shown in Table 3, the smallest eigenvalues for both 
solutions are computed numerically for different 
shrinking parameters c. In the first solution, the 
eigenvalues are observed to be real and positive, while in 
the second solution, they are negative. Because of the 
positive  smallest eigenvalues, initial disturbances in the  

 
Figure. 5: Effect of 𝑐 on  𝐹′(𝑠). 

 

Figure. 6: Effect of 𝑐 on 𝜁(𝑠). 
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Figure. 7: Effect of 𝑐 on 𝐹(𝑠). 

 

                         
fluid flow diminishes over time, that is 𝑒−𝜔𝜖 → 0 as ϵ → 
∞. Consequently, the first solutions are determined to be 
stable. However, the smallest negative eigenvalue 
suggests an amplification of initial disturbances in the 
flow, given by 𝑒−𝜔 𝜖 → ∞ indicating that the flow 
solutions (second solution) exhibit unstable behavior. 
The stable solution is physically meaningful for the 
above flow, whereas the unstable solution is not.                     

7 Conclusion 
The research delved into the boundary layer 

stagnation-point flow and convective heat transfer on a 
linearly stretching/shrinking surface in non-Newtonian 
Williamson fluid. A suitable similarity transformation is 
employed to convert the PDEs into nonlinear ODEs for 
modelling purposes. The application of the shooting 
method illustrates the existence of a solution and 
examines its characteristics. The numerical solution for 
this study is acquired by implementing the shooting-
based numerical code in MATLAB, specifically using the 
BVP4C solver. Furthermore, a connection has been 
established between theoretical results and numerical 
investigations. A temporal stability analysis is conducted 
to identify a stable solution, providing insight into the 
primary flow dynamics. The main findings of this study 
can be outlined as follows 

 The existence of a unique solution to the 
nonlinear equation is proved for the 
stretching/shrinking parameter 𝑐 ∈ (−1,∞).  

 Dual solutions exist for c ∈ [𝑐𝑇 , −1], and there 
does not exist any solution for 𝑐 ∈ (−∞, 𝑐𝑇). 

 The velocity profile 𝐹′(𝑠) decreases with non-
Newtonian parameter 𝜆 in both solution 
branches, whereas the temperature profile 𝜁(𝑠) 
increases with 𝜆.  

  In the first solution branch, the boundary layer 
thickness (for both momentum and thermal) is 
smaller compared to the second solution branch. 
Additionally, the solution domain expands with 
increasing 𝜆. 

 Stability analysis indicates that the first solution 
branch is physically acceptable, as all the 
smallest eigenvalues are positive, whereas the 
second solution branch is unstable. 

 An asymptotic solution for large 𝑐 > 0 shows 
that the expressions 𝐹′′(0)~ − 1.316134 𝑐3/2 
and 𝜁′(0) ~ −0.556919 𝑐1/2 as 𝑐 → ∞. 

Appendix A 
A study on temporal stability is conducted 

using the foundational research of Merkin [16], who 
identified potential practical unreliability in the 
lower branch. To achieve this, we consider the time-
varying representation of equations (11)-(12) 

(
𝜕𝑢

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑢

𝜕𝑢

𝜕𝑥
) =

𝜇0
𝜌
(
𝜕2𝑢

𝜕𝑦2
+ 2Γ

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
) 

 

 −
1

𝜌

𝜕𝑝

𝜕𝑥
, 

(
𝜕𝑇

𝜕𝑡
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑢

𝜕𝑇

𝜕𝑥
) =

𝑘

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2
. (𝐴1) 

Due to the presence of a time variable, we introduce 
the following new dimensionless variable 

𝑣 = 𝑏𝑥𝐹′(𝑠, 𝜖), 𝑣 = −√𝑏𝜈𝐹(𝑠, 𝜖), 𝑇 = 𝑇𝑤 + (𝑇𝑤 −

𝑇∞)𝜁(𝑠, 𝜖), and 𝜖 = 𝑏𝑡, where 𝑠 = √
𝑏

𝜈
𝑦.               (A2) 

Here, 𝜖 represents the updated non-dimensional time 
parameter. Employing 𝜖 refers to an initial value 
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challenge, raising the query of which solution holds 
physical validity. By using (A2), from (A1), we get 

𝐹′′′ + 1 + 𝜆𝐹′′𝐹′′′ + 𝐹𝐹′′ − 𝐹2 − 𝐹𝜖
′ = 0,

𝜁′′ + Pr𝐹𝜁′ − Pr𝜁𝜖 = 0, (𝐴3)
 

where,  ′ denotes the derivative concerning 𝑠 and 
superscript 𝜖 represents derivative with respect to 𝜖. The 
boundary conditions for the above time dependent flow 
are 

𝐹(0, 𝜖) = 0, 𝐹′(0, 𝜖) = 𝑐, 𝐹′(∞, 𝜖) → 1, 𝜁(0, 𝜖) =
1, 𝜁(∞, 𝜖) → 0.                                                                            (A4) 

To assess the stability of the steady flow solution, 
𝐹(𝑠) = 𝐹0 and 𝜁(𝑠) = 𝜁0 satisfy equations (11)-(12), a 
group of perturbed equations is examined to facilitate 
the separation of variables  

𝐹(𝑠, 𝜖) = 𝐹0(𝑠) + 𝑒
−𝜔𝜖𝑀(𝑠, 𝜖), 𝜁(𝑠, 𝜖) = 𝜁0(𝑠) 

 +𝑒−𝜔𝜖𝑁(𝑠, 𝜖) .                                                                      (A5) 

Here, 𝜔 is an unknown eigenvalue, and both 𝐹(𝑠, 𝜖) 
and 𝜁(𝑠, 𝜖) are significantly smaller than 𝐹0 and 𝜁0. 
Solving the eigenvalue problem (A4)-(A5) provides a 
series of eigenvalues 𝜔1 < 𝜔2 < 𝜔3 < ⋯. If 𝜔1 is 
negative, it implies initial disturbance growth, indicating 
flow instability. Conversely, when 𝑤1 is positive, there is 
initial decay, signifying flow stability. Substituting (A5) 
into (A3)-(A4) and leads to the following linearized 
problem 

𝑀′′′ + 𝜆𝐹0
′′𝑀′′′ + 𝜆𝐹0

′′′𝑀′′ − 2𝐹0
′𝑀′ + 𝐹0𝑀

′′ +𝑀𝐹0
′′ 

+𝜔𝑀′ −𝑀𝜖
′ = 0,  

1

𝑃𝑟
𝑁′′ + 𝐹0𝑁

′ +𝑀𝜁0
′ +𝜔𝑁 −𝑁𝜖 = 0,       

𝑀(0, 𝜖) = 0,𝑀′(0, 𝜖) = 0,𝑁(0, 𝜖) = 0, 

𝑀′(∞, 𝜖) → 0,𝑁(∞, 𝜖) → 0.                                             (A6) 

Now, we are putting 𝜖 = 0 for check the stability of 
steady state solution and considering 𝑀(𝑠, 0) = 𝑀0(𝑠) 
and 𝑁(𝑠, 0) = 𝑁0(𝑠), then equations (A6) become 

𝑀0
′′′ + 𝜆𝐹0

′′𝑀0
′′′ + 𝜆𝐹0

′′′𝑀0
′′ − 2𝐹0

′𝑀0
′ + 𝐹0𝑀0

′′ 

+𝑀0𝐹0
′′ + 𝜔𝑀0

′ = 0, 

1

𝑃𝑟
𝑁0
′′ + 𝐹0𝑁0

′ +𝑀0𝜁0
′ +𝜔𝑁0 = 0, 

𝑀0(0) = 0,𝑀0
′ (0) = 0,𝑁0(0) = 0,𝑀0

′ (∞) → 0, 

𝑁0(∞) → 0.                                                                       (A7) 

Solving equations (A7) numerically, one can easily get 
the smallest eigenvalue. See [24] for a detailed 
explanation of determining the smallest eigenvalue. To 
solve it, we need an additional boundary condition. 
Therefore, without loss of generality, we take 𝑀0

′′(0) =
1. 
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