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Abstract - This study investigates pressure tooling issues in 
Non-Newtonian fluids under both isothermal and non-
isothermal conditions, focusing on annular drag flow. The 
analysis considers creeping pressure tooling flow in a two-
dimensional axisymmetric cylindrical coordinate system. These 
problems are modeled using non-linear partial differential 
equations derived from the Navier–Stokes, heat transfer, and 
Oldroyd-B formulations. To solve the governing and constitutive 
equations, the Semi-implicit Taylor–Galerkin pressure-
correction finite element method (STGFEM) is employed. For 
polymer melt flows at Weissenberg numbers (We), a feedback 
mechanism is introduced to adjust the inlet boundary 
conditions. To enhance convergence, the streamline-
upwind/Petrov–Galerkin approach is incorporated. Finally, the 
swelling ratio of the extruded product is compared with 
experimental data from pressure tooling applications. The 
computed extrudate dimensions show strong agreement with 
experimental results and reasonable consistency with analytical 
predictions. While experimental and numerical outcomes are 
closely matched, a discrepancy is observed when compared to 
the analytical model. As a result, non-isothermal systems exhibit 
greater pressure drop, shear rate, and elongation compared to 
isothermal cases. Thermal effects weaken the intermolecular 
bonding in polymers, thereby influencing shear rate and 
pressure drop. The temperature of pressure-tooling process is 
very useful to keep the polymeric material from hardening and 
to support it easier to propel the polymer stream through the 
die. The maximum temperature is observed at the leading edge 
of the pressure-tooling domain, after which it decreases 
progressively and eventually diminishes once the wire becomes 
coated with the polymer melt in the free-surface region. 

 
Keywords: Isothermal condition, Non-isothermal 
conditions, Pressure tooling 
 
© Copyright 2025 Authors - This is an Open Access article 
published under the Creative Commons Attribution               

License terms (http://creativecommons.org/licenses/by/3.0). 
Unrestricted use, distribution, and reproduction in any medium 
are permitted, provided the original work is properly cited. 
 
 

1. Introduction 
Nowadays, a lot of polymer products such as PVC 

pipes, electric wires, fiber optics and plastic bags are 
produced to support consumers. After the time has 
passed for a long period, a lot of polymer materials are 
used up so many factories tried to find out new plastic 
compounds for substitution. The real experiments were 
set up to check the quality of the outcome so the process 
is time-consuming and costly due to the trial and error 
tests. In order to save money and cut time, the 
simulations of real problems are created with 
mathematical models so the solution is achieved by 
numerical methods. Since all models approaching to real 
world are complicated, the simplest expression is started 
for Newtonain fluid before developing to complex flow. 
In case of polymer melts, the fluid is viscoelastic so the 
behavior of flow can explain with stress equations such 
as power law, Maxwell and Oldroyd-B models. The 
constitutive model of Oldroyd-B fluid is proposed to 
represent the high-density polyethylene that is 
popularly used in the manufacture of plastics.  For the 
coating processes, the polymeric beads are melted under 
heat while they are passing with friction along the 
extrusion screw. Under this research, the wire coating 
flow for annular pressure tooling die is considered with 
cylindrical coordinate system that is suitable to 
specifying geographic position. 

This research is focused on thermal condition of 
annular flow for the Newtonian and Oldroyd-B fluids 
using three different geometries; namely, stick-slip, die-
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swell and pressure tooling domains under isothermal 
and non-isothermal conditions. These problems are 
solved by a semi-implicit Taylor-Galerkin pressure-
correction finite element method (STGFEM) [1] with 
feedback boundary scheme [2] based on two-
dimensional system. For the stick-slip and die-swell 
phenomenon [3], the materials of polymer melt show 
steep shear stress and strong elongation when the flow 
contracts at die exit section then the streamline path of 
viscoelastic fluid suddenly changes direction from stick 
to slip boundary, so the trajectory is swell at the surface 
because this region has high pressure to push the fluid 
flow pass die. For the thermal condition, the initial value 
at inlet is the major boundary to set for solving the 
solution in domain but the calculation would be 
terminated when the program tries to run with high 
Weissenberg number. Actually, the calculation of 
Oldroyd-B model has confronted to breakdown with 
infinite error after the machine keeps trying to rerun 
high Weissenberg number. 

The stick-slip problem [4] is the simulation case 
for specific condition that is not actual occurrence whilst 
the die-swell in the extrusion process approaches real 
problem more than stick-slip case. This process is 
applied to pharmaceutical manufacturing [5,6], PVC pipe 
factory and wire cable industry. For the extrusion 
process, the high speed near die exit makes the violent 
shear stress at die wall and then the high swelling ratio 
appears. The surface of extrudate is confronted with 
sharp skin when viscoelastic fluid moves pass die with 
high velocity, so it leads to severe crack which is the 
defect of the products. 

In extrusion process, the free surface method was 
solved by integral transforms for adjusting the stick-slip 
shape then move on to free surface geometry. The flow 
passes a stick region in die wall and swell after die then 
the conflict of two regions makes the singular point for a 
severe shear stress and steep velocity gradients. The 
singularity point was measured by capillary viscometer 
in polystyrene fluid [7]. This research described the 
effect of molecular weights on swelling ratio and the 
swell surface is almost dependent on the aspect ratio L/D 
(length/diameter). The singularity effect [8] of stress 
and strain is reduced by semi-radial singularity mapping 
theory but this theory is not widespread because there is 
a scope of use with some liquids. 

The models of non-Newtonian flow such as the 
Oldroyd-B and Phan-Thien/Tanner fluids are 
represented by the Navier-Stokes equations that express 
the state of flow whilst the mathematical model of 

viscoelastic problem is a form of non-linear partial 
differential equations under conservation law of mass 
and momentum. Since all mathematical models are non-
linear partial differential equations then the analytical 
solution is hard to find.  

To avoid testing from trial, the approximate 
solution is used alternatively with high-performance 
computing, so the time is cut off and the budget is saved. 
For the numerical method, the procedure is easy to 
modify the characteristics of parameter when the 
boundary condition is changed. At first, the wire-coating 
simulation with the simple constitutive model of 
viscoelastic flow, that is power-law fluid, is solved by 
finite element method under the isothermal condition 
[9] but the solution does not get along well with real 
experiment and then the influence of the temperature 
boundary condition is investigated [10]. 

Then the slip condition was added in the wire-
coating flow of Newtonian and power-law fluids at the 
solid boundaries [11]. Furthermore, a wire-coating flow 
of a low-density polyethelene (LDPE) was represented 
by power-law fluids under thermal and isothermal cases 
via the finite element method with SUPG scheme [12] 
and this numerical result was close to the experiment. 
The various numerical schemes were developed to solve 
a wire-coating problem with a viscoelastic flow. A tube-
tooling die in a non-isothermal case was solved by couple 
and decouple methods [13]. A tube-tooling of wire-
coating flow with Phan-Thien/Tanner constitutive 
model (PTT) [14,15,16] and then the contraction point of 
wire-coating was calculated for Phan-Thien/Tanner 
model with tube-tooling flow [17,18]. For Oldroyd-B 
fluid, this research has shown the effect of the slip in 4:1 
contraction flow through which the slip can reduce the 
stress and vortex at sharp corner [19].  

The literature reviews of extrudate swell flows 
under heat condition were explained as follows: The 
White-Metzner constitutive model [20] for non-
isothermal case was solved by finite element method. 
The simulation of the extrusion for viscoelastic fluid 
under heat condition was described with a K-BKZ 
equation [21]. The temperature of wire coating process 
is measured in screw extruder when it is rotated within 
the barrel from the effect of shear heating of polymer. 
The cable-coating extrusions were simulated at the 
isothermal system whilst the experiment has indicated 
that thermal is dominant effect to viscosity and pressure. 
The numerical research under temperature [22,23] 
matches well with experimental results with non-
isothermal condition. For more deeply detail to 
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nanofluid scale, the heat transfer characteristics in a 
double-pipe counter-flow have been investigated under 
the finite volume scheme [24]. 

To study the effect of temperature between 
annular die-swell and pressure-tooling flows, the 
mathematical models via the Navier-Stokes equations 
and Oldroyd-B model under thermal condition are 
proposed. The governing equations have been solved by 
finite element method with Taylor-Galerkin pressure-
correction scheme to describe the annular die-swell flow 
passing the entrance. After flow developed to die exit, the 
stream trajectory behaves as free surface in a two-
dimensional domain. The various Weisenberg numbers 
are represented for the different flow behaviors as 
shown in terms of the velocities, stresses, pressure and 
temperature. The local velocity gradient recovery 
scheme and streamline-upwind/Petrov-Galerkin 
method are employed to improve the stability of the 
solution. 

 
2. Materials and Governing Equations 
2.1 Non-Newtonian Fluid 

The velocity divergence of creeping motion for 
incompressible fluid, whose density does not vary, under 
the principle of conservation of mass is shown as the 
continuity equation as Eq. 1. The dimensionless Navier-
Stokes momentum equation without gravity appears in 
Eq. 2. Both equations are useful to describe the physical 
motion of stream path including density (  ), pressure 

(p),  extra-stress tensor ( ) and time (t). 

0 u  (1) 
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where u  is the non-dimensional Reynolds number 

and   
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
  that is a ratio of the inertial to viscous 

forces,   v  is characteristic velocity, l  is characteristic 

length, 0
 is the zero-shear viscosity and 0 p s    , 

p  is the polymeric viscosity and s  is the solvent 

viscosity. The flow behavior depends on shear models 
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u u
D  where the extra-

stress tensor is combination of stress tensor ( ) and the 

rate of deformation tensor ( D ).  
The Oldroyd-B constitutive model consists of non-

dimensionless equation as Eq. 3. 
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where We  is the non-dimensional Weisenberg number.   

1We
v

l


 and 1  is the relaxation time. 

  
2.2 Thermal flow 

For incompressible non-isothermal flow, the 
conservation of energy is used to discuss the effect of 
shear viscosity and temperature. The non-dimensional 
conservation of energy is represented in Eq. (4). 

2
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1
T T Tt Pe

    u +             (4) 

where T   is temperature and Pe  is the non-

dimensional thermal Peclect number and 
c

Pe



 , c is 

specific heat, and   is thermal conductivity, and   is 
the heat source. The zero-shear viscosity for viscous fluid 

under heat is    
( )

0 ( )
T T

p s e 
  

     where T  is 

the temperature at the end of pug flow, and   is the 

material constant for polymeric melt. In this research, 
0.01   for high-density polyethylene (HDPE).  

 
3. Numerical Methods 

The fractional steps are split to 3 stages for 
converting the non-linear differential form to the system 
of linear equations before the computation of the finite 
element method (FEM) is calculated to estimate the 
solution. 
3.1 Semi-implicit Taylor-Galerkin pressure-
correction finite element method 

The semi-implicit Taylor-Galerkin pressure-
correction finite element method split Navier-stokes Eq. 
2 to the three fractional stages per time step but the 
Oldroyd-B and temperature models are discritized to the 
half time step and full time step. The first and last steps 
are solved for the velocities but the middle step is 
calculated for the pressure variable. 
Step 1a: The half time step of velocities, temperature 
and stresses can be derived from the equations below: 

1 1
+ +

2 2
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( ) ( )
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Step 1b: The transient stage of intermediate velocities, 
temperature and stresses is updated as in the following 
equations. 
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Step 2: Full time step of pressure is related to 
intermediate velocity according to the equation. 

2 +1 *( ) 2n np p t Re   u                                    (11) 

Step 3: The full time step velocities is expressed as: 
+1 * +12 ( ) ( )n n nRe t p p  u u        (12) 

 
3.2 Feedback of pressure-driven velocity flow 
 The feedback of this procedure is an occurrence 
that appears when the outcome of velocity and pressure 
from each time step is used as input back into the inlet 
boundary condition as part of a chain to present for 
accelerating the convergent iterative procedures of 
solving the system of linear equations. The solution is 
duplicated for upstream section at the same vertical 
nodes in the stabilized column and return values back to 
inlet boundary. For example, in Figure 1 the possible 
column can be nodes in C2 (column 2), C3, C4 and C5 and 
if the C3 is chosen then the values of velocity and 
pressure of nodes 9, 10, 11 and 12 will be the initial 
condition for nodes 1, 2, 3 and 4, respectively. Firstly, the 

difference of time step is set up at 110 as the rate of 
error. After the feedback of the pressure-driven velocity 
flow is inserted, the difference of time and error is 
reduced gradually to prevent the diverging 

circumstance. This cycle is operated until the inlet 
boundary maintains the stability and the converged 
solution is obtained. 

 
Figure 1. Example of mesh geometry. 

 
For die-swell flow, the location of free surface over 

die is calculated from the solution of stick-slip case as 
Figure 2 and the body of extrudate section is represented 
in Figure 3. The distance from symmetry line to top free 
jet be called swelling ratio as defined by Eq. 13 and is the 
combination of die radius and the fraction between 
radial velocity to axial velocity. 

0

( )
( )

( )

r

zz

u z
r z R dz

u z





                      (13) 

where r is radial position, z is axial position, R is die 

radius, ru  is radial velocity and zu  is axial velocity. 

 

4. Problem Specification 
There are three different geometrical domains, 

that are stick-slip, die swell and pressure-tooling shapes. 
At first domain of stick-slip body is set up to run in a 
program as a simple case. The die-swell case is produced 
from short die but the pressure-tooling form is received 
from long die. 
4.1 Stick-slip flow 

The stick-slip domain as seen in Figure 2, consists 
of two zones with different boundary conditions, in die 
area and over die area. The stick boundary condition is 
applied at die wall while the slip boundary condition is 
concerned at free jet section. The stick-slip mesh is 
divided to 1,944 triangular elements and 4,033 nodes. 
The radial and axial velocities vanish at die boundary 
and both velocities are calculated on the free surface. 

 

 
Figure 2. Mesh geometry of stick-slip flow. 
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4.2 Die-swell flow 
First, the stick-slip problem is simulated to get the 

converge result and then move on to compute the die-
swell flow by taking the solution of stick-slip case to start 
at initial condition. Consequently, the swelling ratio 
represented in Eq. 13 is evaluated to adjust free surface 
geometries. The adaptive die-swell mesh is shown in 
Figure 3. The thermal condition is added to study the 
behavior of the velocity, stresses and pressure for die-
swell flow via Oldroyd-B constitutive model. The 
boundary conditions are detailed in Figure 4 as same 
inlet condition as pressure-tooling issue. 

 

 
Figure 3. Mesh geometry of die-slip flow. 

 

 
Figure 4. Die-swell thermal flow. 

 
At the inlet, the boundary conditions for the 

annular flow are set as following equations. 

0, ( ),  6,  0,( ) z An rrru u u r Tz         

2

,  2z z
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r

u u
We   

  
   

  r
        (14) 

The condition at the end is plug flow for all problems 
with following equations. 

, ,0 1 z plugp T u u            (15) 

 
4.3 Pressure-tooling flow 

The structure of the pressure-tooling problem 
shown in Figure 5 is discretized into a mesh consisting of 
3,810 triangular elements, 7,905 nodes, and 17,858 
degrees of freedom. According to the study in [25], mesh 
convergence was systematically evaluated, ensuring that 
the computational domain remains unaffected by 

artifacts and thus provides reliable results. The polymer 
bulk is extruded from the screw with wire speed 
according to the bottom boundary. The detail of specific 
boundary conditions is described in Figure 6. 
 

 
Figure 5. Mesh geometry of pressure-tooling flow. 

 

 
Figure 6. Pressure-tooling flow. 

 
5. Results and Discussion 
5.1 Result of Stick-slip 

The result of the stick-slip contour color solution 

is plotted for 2We   and 0.88p   as shown in Figure 

7. The radial velocity for all Weissenberg numbers 
approaches zero as seen in Figure 7(a). The axial velocity 
is annular flow at the inlet and the maximum value is 
located at symmetry line as shown in Figure 7(b). When 
the stick-slip flow develops to plug flow at the end of 
downstream, the pressure is maximized at the entrance 
and gradually decreases until zero at the outlet as 

depicted in Figure 7(c). The maximum value of rr ,  rz

, and zz  at die exit are displayed in Figure 7(d), 7(e) and 

7(f), respectively. The peak value of   appears at swell 

area near die exit as detailed in Figure 7(g). Figure 7(h) 
shows maximum value of the temperature at inlet which 
then gradually decreases to 1 at the outlet. 

 

 
(a) ru  
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(b) zu  

 
(c) p  

 
(d) rr  

 
(e) rz  

 
(f) zz  

 
(g)   

 
(h) T  

Figure 7. Stick-slip for Oldroyd-B fluid at 2We  . 
 

 
 
 

5.2 Result of Die-swell 
Die-swell flow of Oldroyd-B fluid is developed from the 
domain of stick-slip problem and the contour color result 

of extrudate swell for 1We    and 0.88p    is shown 

in Figure 8(a)-8(h). The exhibition of color contour plots 

for the radial velocity, axial velocity, pressure, rr ,  rz

, zz ,   and temperature of swell effect are very 

similar to those in stick-slip model. Because of size 
enlargement phenomenon makes the height of radial 

direction after die growth up so the radial velocity, rr , 

rz  and    are higher than those corresponding to 

stick-slip but it is converted for the axial velocity, 

pressure and zz . 

 

 
(a) ru  

 
(b) zu  

 
(c) p  

 
(d) rr  
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(e) rz  

 
(f) zz  

 
(g)   

 
(h) T  

Figure 8. Die-swell for Oldroyd-B fluid at 1We  . 
 

For die-swell flow, the parameters of pressure 

drop ( )p , shear stress ( )rz   and stress in direction    

zz ( )zz , and in direction rr  ( )rr   are compared with 

the result from reference [25] under non-thermal effect 
(N) and the outcome of this work for isothermal (I) and 
thermal conditions (T). The round brackets containing 

parameter with subscripts N, I or T as symbols ( )N ,   

( )I  and ( )T  indicate the value of those parameter for 

the non-thermal effect, isothermal and thermal 
conditions, respectively. 

Table 1 shows the comparison of die-swell flow for 
Newtonian and Oldroyd-B fluid between non-thermal, 
isothermal and non-isothermal processes. The viscosity 
and elongation are greatly proportional to Weissenberg 
number the same as pressure drop and stresses. Another 
dominant effect to pressure drop is heat conduction but 

it gives a little significance for rr , rz  and  . The 

stresses rz  and zz  slightly drop when Weissenberg 

number is 1 conversely to stress rr . 

 
Table 1. The comparison of die-swell flow for Oldroyd-B fluid 

between non-thermal, isothermal  
and non-isothermal conditions. 

We 0 0.5 1 

( )p N  4.94 14.53 32.92 

( )p I  4.86 17.34 37.59 

( )p T  18.18 17.76 38.26 

( )rz N  0.94 8.11 9.48 

( )rz I  0.94 4.79 8.65 

( )rz T  1.79 4.79 8.65 

( )zz N  15.14 23.84 19.62 

( )zz I  10.24 18.99 18.97 

( )zz T  7.47 18.99 18.97 

( )rr N  0.52 3.52 12.62 

( )rr I  1.02 4.72 13.43 

( )rr T  0.99 4.73 13.43 

 

 
(a) ( )p  
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(b) rr  

 
(c) rz  

 
(d) zz  

Figure 9. The bar charts of die-swell flow for Oldroyd-B fluid. 

 
The whole data of table 1 are pick up to draw bar 

charts as details in Figure 9.  Figure 9(a)-9(d) are 
compared under non-thermal isothermal and non-
isothermal systems with four-character values of 
pressure drops, shear, radial and axial stresses, 
respectively. The radial and axial stresses are slightly 
different when We equals 1. Heat shows the dominant 
effect for Newtonian flow while isothermal and non-
isothermal system give almost the same values for 
Oldroyd-B fluid. 

 

5.3 Result of Pressure-Tooling Flow 
At first of the simulation for the pressure tooling 

problem with annular die, the appropriate value of p   

is 0.88 for Oldroyd-B fluid and the high 2We   is chosen 
to run for difficult flow. On top edge region, the value of 
shear stress starts oscillating as seen in Figure 10 from z 
direction at the point -1.50 to 0.50 and the peak is 1.98 

near die exit ( 0)z   as similarly to the result along 

bottom line, that generates two waves, the small peak of 

0.05 at  1.10z   and the big apex of 0.54 at die outlet.  
For Figure 11, the extreme point of axial stress at top 
edge is 6.69 whilst the maximal value at the bottom is 
0.80 and the small peak appears at the second acute 
corner where it contacts with wire. As stated above, the 
shear rate of Newtonian and viscoelastic fluids between 
isothermal and non-isothermal condition are compared 
in Figure 12.  The shear rate at the top edge jumps to 
maximum value near die exit due to contraction point 
where the fluid is pushed out from mold made the free 
surface swell. At the top edge, the peaks of shear rate for 
isothermal and non-isothermal happen near die exit 
with maximum values of 606.41 and 649.46, respectively 
but the bottom edge created twice peaks at contraction 
point and die exit. 
 

 
(a) At top edge 
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(b) At bottom edge 

Figure 10. rz  for isothermal condition. 

 

 
(a) At top edge 

 
(b) At bottom edge 

Figure 11. zz  for isothermal condition. 

 
(a) At top edge 

 
(b) At bottom edge 

Figure 12.   for isothermal condition. 

 
Table 2. The comparison of pressure-tooling flow for 

Oldroyd-B fluid between isothermal  
and non-isothermal condition. 

We 0.5 1 1.5 2 

( )r Iu  1.08 1.07 1.07 1.07 

( )r Tu  1.08 1.07 1.07 1.07 

( )z Iu  3.45 3.45 3.45 3.45 

( )z Tu  3.41 3.41 3.42 3.42 

( )rr I  3.21 1.65 1.12 0.83 

( )rr T  3.25 1.66 1.12 0.84 

( )rz I  8.28 3.98 2.61 1.94 

( )rz T  8.49 4.07 2.67 1.98 

( )zz I  26.13 13.18 8.81 6.61 

( )zz T  26.46 13.33 8.91 6.69 
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( )I  0.13 0.07 0.05 0.03 

( )T  0.13 0.07 0.05 0.03 

( )I  609.81 607.22 606.64 606.41 

( )T  656.81 651.62 650.10 649.46 

( )I  11.06 8.41 7.40 7.40 

( )T  11.42 8.82 7.73 7.71 

( )Ip  132.09 126.90 125.15 124.27 

( )Tp  1019.80 980.33 967.00 960.31 

 
From Table 2, the heat does not affect velocities 

( , )r zu u  but it is significant to pressure and stresses. All 

stresses ( , , , )rr rz zz     , the pressure drop ( )p , 

the shear rate ( )  and the elongation rate ( )  are 

reduced when Weissenberg number increases. Under 
non-isothermal system, the pressure drop is 6.73 times 
greater than that of isothermal system. The shear rate 
and elongation rate of non-isothermal case are 7% and 
4% of the values for isothermal stage, respectively. The 
heat makes the bond of viscoelastic fluid breakdown; 
hence, the shear rate is higher for non-isothermal case. 

The color contour of pressure-tooling flow with 

non-isothermal condition for Oldroyd-B fluid at 2We   
is shown in Figure 13. Figure 13(a) displays the radial 
velocity approaching zero near die exit and the axial 
velocity pattern is annular shape at entrance then the 
flow path develops gradually to plug model after the fluid 
moves to touch wire at downstream location, so the 
uniform rate is the same as wire speed. When the creep 
motion of polymer melt moves gently departing die, the 
contraction where steep die changes to free surface 
causes the swell phenomenon reveal the conservation of 
flow rate in accordance with Figure 13(b). Since the flow 
is driven by pressure, the force is maximum at entry and 
reduces down to zero when moves through the air 
outside the die. The measurement of pressure drop 
across upstream to downstream is 960.31 as displayed 

in Figure 13(c). The color contours of the maximum rr

,  rz , zz  and   referred to Figures 13(d)-13(g) are 

0.84, 1.98, 6.69 and 0.03, respectively. All stresses mostly 
give little values except for the neighborhood of die exit 
since the direction of flow is changed instantly so all 
forces are transferred in the system to adjust the new 

balance. The thermal is maximum at the inlet boundary 
and then decreased gradually until it vanishes when the 
wire is coated by plastic fluid as seen in Figure 13(h). 

 

 
(a) ru  

 
(b) zu  

 
(c) p  

 
(d) rr  

 
(e) rz  

 
(f) zz  

 
(g)   
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(h) T  

Figure 13. Annular non-isothermal pressure-tooling 
flow for Oldroyd-B fluid at  2We  . 

 

5. Conclusion 
The simulation of wire-coating process for the 

pressure-tooling die, which is the representation of the 
extrusion procedure in industry, is studied under 
isothermal and non-isothermal condition. The stress 
equation of Oldroyd-B model is proposed with the 
motion of viscoelastic fluid especially for high density 
polyethylene, that corresponds to the selected value of 
material parameter. The die-swell and pressure-tooling 
flows are expressed via the Navier-Stokes equations in 
two-dimensional axisymmetric system under isothermal 
and non-isothermal conditions. The numerical solutions 
are calculated by semi-implicit Taylor-Galerkin 
pressure-correction finite element method with 
feedback of pressure-driven velocity flow. The velocity 
gradient recovery and the streamline-upwind/Petrov-
Galerkin techniques are used to stabilized the 
converging solution. 

For die-swell problem of non-Newtonian fluid, 
when Weissenberg number is increased, the viscosity 
and elongation are increased. The maxima of the shear 
stress and other stresses are located near die exit since 
the flows are confronted with the contraction point then 
the stream path is a suddenly changed to expand the 
radial direction known as swell phenomenon. The steep 
shear stress occurs at die exit because of high velocity 
near die exit. After the flow passes from a stick entry part 
to a free exit section, the singularity of severe stress and 
steep velocity gradients region will be appeared. The 
singularity point of swelling extrusion position is rough 
and the free surface path will become shark skin and the 
crack of polymer product. For pressure-tooling case, the 
thermal effect damages the bonding between chains of 
polymer so the heat affects shear rate and pressure drop. 
The pressure drop, shear rate and elongation of non-
isothermal system are higher than those for isothermal 
condition as the rate of 6.73 times higher for the 
pressure drop, 7% higher for shear rate and 4% taller for 
elongation. Proper thermal regulation within the 
pressure-tooling process is critical to suppress 

premature solidification of the polymeric material and to 
ensure sufficient driving capability for the polymer 
stream to be conveyed through the die. 
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