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Abstract - This study investigates pressure tooling issues in
Non-Newtonian fluids under both isothermal and non-
isothermal conditions, focusing on annular drag flow. The
analysis considers creeping pressure tooling flow in a two-
dimensional axisymmetric cylindrical coordinate system. These
problems are modeled using non-linear partial differential
equations derived from the Navier-Stokes, heat transfer, and
Oldroyd-B formulations. To solve the governing and constitutive
equations, the Semi-implicit Taylor-Galerkin pressure-
correction finite element method (STGFEM) is employed. For
polymer melt flows at Weissenberg numbers (We), a feedback
mechanism is introduced to adjust the inlet boundary
conditions. To enhance convergence, the streamline-
upwind/Petrov-Galerkin approach is incorporated. Finally, the
swelling ratio of the extruded product is compared with
experimental data from pressure tooling applications. The
computed extrudate dimensions show strong agreement with
experimental results and reasonable consistency with analytical
predictions. While experimental and numerical outcomes are
closely matched, a discrepancy is observed when compared to
the analytical model. As a result, non-isothermal systems exhibit
greater pressure drop, shear rate, and elongation compared to
isothermal cases. Thermal effects weaken the intermolecular
bonding in polymers, thereby influencing shear rate and
pressure drop. The temperature of pressure-tooling process is
very useful to keep the polymeric material from hardening and
to support it easier to propel the polymer stream through the
die. The maximum temperature is observed at the leading edge
of the pressure-tooling domain, after which it decreases
progressively and eventually diminishes once the wire becomes
coated with the polymer melt in the free-surface region.
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conditions, Pressure tooling
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1. Introduction

Nowadays, a lot of polymer products such as PVC
pipes, electric wires, fiber optics and plastic bags are
produced to support consumers. After the time has
passed for a long period, a lot of polymer materials are
used up so many factories tried to find out new plastic
compounds for substitution. The real experiments were
set up to check the quality of the outcome so the process
is time-consuming and costly due to the trial and error
tests. In order to save money and cut time, the
simulations of real problems are created with
mathematical models so the solution is achieved by
numerical methods. Since all models approaching to real
world are complicated, the simplest expression is started
for Newtonain fluid before developing to complex flow.
In case of polymer melts, the fluid is viscoelastic so the
behavior of flow can explain with stress equations such
as power law, Maxwell and Oldroyd-B models. The
constitutive model of Oldroyd-B fluid is proposed to
represent the high-density polyethylene that is
popularly used in the manufacture of plastics. For the
coating processes, the polymeric beads are melted under
heat while they are passing with friction along the
extrusion screw. Under this research, the wire coating
flow for annular pressure tooling die is considered with
cylindrical coordinate system that is suitable to
specifying geographic position.

This research is focused on thermal condition of
annular flow for the Newtonian and Oldroyd-B fluids
using three different geometries; namely, stick-slip, die-



swell and pressure tooling domains under isothermal
and non-isothermal conditions. These problems are
solved by a semi-implicit Taylor-Galerkin pressure-
correction finite element method (STGFEM) [1] with
feedback boundary scheme [2] based on two-
dimensional system. For the stick-slip and die-swell
phenomenon [3], the materials of polymer melt show
steep shear stress and strong elongation when the flow
contracts at die exit section then the streamline path of
viscoelastic fluid suddenly changes direction from stick
to slip boundary, so the trajectory is swell at the surface
because this region has high pressure to push the fluid
flow pass die. For the thermal condition, the initial value
at inlet is the major boundary to set for solving the
solution in domain but the calculation would be
terminated when the program tries to run with high
Weissenberg number. Actually, the calculation of
Oldroyd-B model has confronted to breakdown with
infinite error after the machine keeps trying to rerun
high Weissenberg number.

The stick-slip problem [4] is the simulation case
for specific condition that is not actual occurrence whilst
the die-swell in the extrusion process approaches real
problem more than stick-slip case. This process is
applied to pharmaceutical manufacturing [5,6], PVC pipe
factory and wire cable industry. For the extrusion
process, the high speed near die exit makes the violent
shear stress at die wall and then the high swelling ratio
appears. The surface of extrudate is confronted with
sharp skin when viscoelastic fluid moves pass die with
high velocity, so it leads to severe crack which is the
defect of the products.

In extrusion process, the free surface method was
solved by integral transforms for adjusting the stick-slip
shape then move on to free surface geometry. The flow
passes a stick region in die wall and swell after die then
the conflict of two regions makes the singular point for a
severe shear stress and steep velocity gradients. The
singularity point was measured by capillary viscometer
in polystyrene fluid [7]. This research described the
effect of molecular weights on swelling ratio and the
swell surface is almost dependent on the aspect ratio L/D
(length/diameter). The singularity effect [8] of stress
and strain is reduced by semi-radial singularity mapping
theory but this theory is not widespread because there is
a scope of use with some liquids.

The models of non-Newtonian flow such as the
Oldroyd-B and Phan-Thien/Tanner fluids are
represented by the Navier-Stokes equations that express
the state of flow whilst the mathematical model of
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viscoelastic problem is a form of non-linear partial
differential equations under conservation law of mass
and momentum. Since all mathematical models are non-
linear partial differential equations then the analytical
solution is hard to find.

To avoid testing from trial, the approximate
solution is used alternatively with high-performance
computing, so the time is cut off and the budget is saved.
For the numerical method, the procedure is easy to
modify the characteristics of parameter when the
boundary condition is changed. At first, the wire-coating
simulation with the simple constitutive model of
viscoelastic flow, that is power-law fluid, is solved by
finite element method under the isothermal condition
[9] but the solution does not get along well with real
experiment and then the influence of the temperature
boundary condition is investigated [10].

Then the slip condition was added in the wire-
coating flow of Newtonian and power-law fluids at the
solid boundaries [11]. Furthermore, a wire-coating flow
of a low-density polyethelene (LDPE) was represented
by power-law fluids under thermal and isothermal cases
via the finite element method with SUPG scheme [12]
and this numerical result was close to the experiment.
The various numerical schemes were developed to solve
a wire-coating problem with a viscoelastic flow. A tube-
tooling die in a non-isothermal case was solved by couple
and decouple methods [13]. A tube-tooling of wire-
coating flow with Phan-Thien/Tanner constitutive
model (PTT) [14,15,16] and then the contraction point of
wire-coating was calculated for Phan-Thien/Tanner
model with tube-tooling flow [17,18]. For Oldroyd-B
fluid, this research has shown the effect of the slip in 4:1
contraction flow through which the slip can reduce the
stress and vortex at sharp corner [19].

The literature reviews of extrudate swell flows
under heat condition were explained as follows: The
White-Metzner constitutive model [20] for non-
isothermal case was solved by finite element method.
The simulation of the extrusion for viscoelastic fluid
under heat condition was described with a K-BKZ
equation [21]. The temperature of wire coating process
is measured in screw extruder when it is rotated within
the barrel from the effect of shear heating of polymer.
The cable-coating extrusions were simulated at the
isothermal system whilst the experiment has indicated
that thermal is dominant effect to viscosity and pressure.
The numerical research under temperature [22,23]
matches well with experimental results with non-
isothermal condition. For more deeply detail to



nanofluid scale, the heat transfer characteristics in a
double-pipe counter-flow have been investigated under
the finite volume scheme [24].

To study the effect of temperature between
annular die-swell and pressure-tooling flows, the
mathematical models via the Navier-Stokes equations
and Oldroyd-B model under thermal condition are
proposed. The governing equations have been solved by
finite element method with Taylor-Galerkin pressure-
correction scheme to describe the annular die-swell flow
passing the entrance. After flow developed to die exit, the
stream trajectory behaves as free surface in a two-
dimensional domain. The various Weisenberg numbers
are represented for the different flow behaviors as
shown in terms of the velocities, stresses, pressure and
temperature. The local velocity gradient recovery
scheme and  streamline-upwind/Petrov-Galerkin
method are employed to improve the stability of the
solution.

2. Materials and Governing Equations
2.1 Non-Newtonian Fluid

The velocity divergence of creeping motion for
incompressible fluid, whose density does not vary, under
the principle of conservation of mass is shown as the
continuity equation as Eq. 1. The dimensionless Navier-
Stokes momentum equation without gravity appears in
Eq. 2. Both equations are useful to describe the physical
motion of stream path including density ( p ), pressure

(p), extra-stress tensor (o ) and time (t).

V-u=0 (1)
Rezltl:V-O'—Re u-Vu-Vp (2)

where u is the non-dimensional Reynolds number

vl

and Re= i that is a ratio of the inertial to viscous
Hy

forces, v is characteristic velocity, / is characteristic

length, 4, is the zero-shear viscosity and £y = tp + Ug,

Hp is the polymeric viscosity and g is the solvent

viscosity. The flow behavior depends on shear models

Vu+(V u)t

o=7+2u;D and D= where the extra-

stress tensor is combination of stress tensor (7 ) and the
rate of deformation tensor (D).

The Oldroyd-B constitutive model consists of non-
dimensionless equation as Eq. 3.
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Wer,= Z,uPD—r+We(z'-Vu+(Vu)t- T-u-vVr) (3)
where We is the non-dimensional Weisenberg number.

I/VezM
/

and A, is the relaxation time.
2.2 Thermal flow

For incompressible non-isothermal flow, the
conservation of energy is used to discuss the effect of
shear viscosity and temperature. The non-dimensional
conservation of energy is represented in Eq. (4).

1

Tt=P—V2T—u-VT+,uOCD (4)
e
where 7' is temperature and Pe is the non-

c
dimensional thermal Peclect number and Pe = '0—, cis
K

specific heat, and x is thermal conductivity, and @ is
the heat source. The zero-shear viscosity for viscous fluid

-B(T-T,)

under heatis o =(up + Hs)e where 7, is

the temperature at the end of pug flow, and £ is the

material constant for polymeric melt. In this research,
L =0.01 for high-density polyethylene (HDPE).

3. Numerical Methods

The fractional steps are split to 3 stages for
converting the non-linear differential form to the system
of linear equations before the computation of the finite
element method (FEM) is calculated to estimate the
solution.
3.1 Semi-implicit Taylor-Galerkin
correction finite element method

The semi-implicit Taylor-Galerkin pressure-
correction finite element method split Navier-stokes Eq.
2 to the three fractional stages per time step but the
Oldroyd-B and temperature models are discritized to the
half time step and full time step. The first and last steps
are solved for the velocities but the middle step is
calculated for the pressure variable.
Step 1a: The half time step of velocities, temperature
and stresses can be derived from the equations below:

2Re
—(u
At

pressure-

1
+- +
"2ou")=V ug (D" 2-D")

+ (V- (r+2usD)—Reu-Vu-Vp)" (5)



1
n+—
2T 2-T")= At(PiVZT—u-VTﬁuOcD)"
(]

(6)
2 We m+l
A (z 2-7")=(Q2u,D-7)"
+We(r-Vu+(Vu) -t—u-Vr)" (7)

Step 1b: The transient stage of intermediate velocities,
temperature and stresses is updated as in the following
equations.

* n+—
%(u ~u™)=(V-tr—Reu-Vu ) 2

+v.ﬂ5(p*_p”)+2usv-1)”— vp” (8)
+7

7ol _pno =At(éV2T—u-VT+ 1®) 2 9)
We n+1_ _n 17+1

—(7 -7 )=Qu,D-7 2

At( )=(2u, )

1
+ We(r-Vu+(Vu) -t—u-Vr)'; (10)

Step 2: Full time step of pressure is related to
intermediate velocity according to the equation.

Vi(p™ - p™At =2ReVU" (11)
Step 3: The full time step velocities is expressed as:
2Re(u™ —u" ) =—At(p™ - p™) (12)

3.2 Feedback of pressure-driven velocity flow

The feedback of this procedure is an occurrence
that appears when the outcome of velocity and pressure
from each time step is used as input back into the inlet
boundary condition as part of a chain to present for
accelerating the convergent iterative procedures of
solving the system of linear equations. The solution is
duplicated for upstream section at the same vertical
nodes in the stabilized column and return values back to
inlet boundary. For example, in Figure 1 the possible
column can be nodes in C2 (column 2), C3, C4 and C5 and
if the C3 is chosen then the values of velocity and
pressure of nodes 9, 10, 11 and 12 will be the initial
condition for nodes 1, 2, 3 and 4, respectively. Firstly, the

difference of time step is set up at 107! as the rate of
error. After the feedback of the pressure-driven velocity
flow is inserted, the difference of time and error is
reduced gradually to prevent the diverging

355

circumstance. This cycle is operated until the inlet
boundary maintains the stability and the converged
solution is obtained.

Die-exit
inlet !
401 c2 c3 C4 ¢35 Cs C7
K 8 2"\\
- 7 11
Z\E 0
1 N

Figure 1. Example of mesh geometry.

For die-swell flow, the location of free surface over
die is calculated from the solution of stick-slip case as
Figure 2 and the body of extrudate section is represented
in Figure 3. The distance from symmetry line to top free
jet be called swelling ratio as defined by Eq. 13 and is the
combination of die radius and the fraction between
radial velocity to axial velocity.

o U
r(z)=R+ | r(2)
z=0Uz (Z)
where r is radial position, z is axial position, R is die
radius, u,. is radial velocity and u, is axial velocity.

dz

(13)

4. Problem Specification

There are three different geometrical domains,
that are stick-slip, die swell and pressure-tooling shapes.
At first domain of stick-slip body is set up to run in a
program as a simple case. The die-swell case is produced
from short die but the pressure-tooling form is received
from long die.
4.1 Stick-slip flow

The stick-slip domain as seen in Figure 2, consists
of two zones with different boundary conditions, in die
area and over die area. The stick boundary condition is
applied at die wall while the slip boundary condition is
concerned at free jet section. The stick-slip mesh is
divided to 1,944 triangular elements and 4,033 nodes.
The radial and axial velocities vanish at die boundary
and both velocities are calculated on the free surface.
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Figure 2. Mesh geometry of stick-slip flow.



4.2 Die-swell flow

First, the stick-slip problem is simulated to get the
converge result and then move on to compute the die-
swell flow by taking the solution of stick-slip case to start
at initial condition. Consequently, the swelling ratio
represented in Eq. 13 is evaluated to adjust free surface
geometries. The adaptive die-swell mesh is shown in
Figure 3. The thermal condition is added to study the
behavior of the velocity, stresses and pressure for die-
swell flow via Oldroyd-B constitutive model. The
boundary conditions are detailed in Figure 4 as same
inlet condition as pressure-tooling issue.

e
e

N
I\

T -6 Dieexit Free surface

u, = 0. u; =0 o pzTel

. —_—

= —!
inlet R Rj _"Euutlct

- l —

- —_—

up =0. Uz =type

Figure 4. Die-swell thermal flow.

At the inlet, the boundary conditions for the
annular flow are set as following equations.

U (z)=0, u, =uy,(r), T=6, 7, =759 =0,
jZ
The condition at the end is plug flow for all problems
with following equations.

p=0, T=1 u,=

ou

ou
TI'Z:lupa_rzv TZZZZWEﬂp Z

3

r

(14)

plug (15)

4.3 Pressure-tooling flow

The structure of the pressure-tooling problem
shown in Figure 5 is discretized into a mesh consisting of
3,810 triangular elements, 7,905 nodes, and 17,858
degrees of freedom. According to the study in [25], mesh
convergence was systematically evaluated, ensuring that
the computational domain remains unaffected by
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artifacts and thus provides reliable results. The polymer
bulk is extruded from the screw with wire speed
according to the bottom boundary. The detail of specific
boundary conditions is described in Figure 6.

PR R
TN

Figure 5. Mesh geometry of pressure-tooling flow.
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Figure 6. Pressure-tooling flow.

5. Results and Discussion
5.1 Result of Stick-slip
The result of the stick-slip contour color solution

is plotted for We =2 and t, =0.88 as shown in Figure

7. The radial velocity for all Weissenberg numbers
approaches zero as seen in Figure 7(a). The axial velocity
is annular flow at the inlet and the maximum value is
located at symmetry line as shown in Figure 7(b). When
the stick-slip flow develops to plug flow at the end of
downstream, the pressure is maximized at the entrance
and gradually decreases until zero at the outlet as

depicted in Figure 7(c). The maximum value of 7,, 7,5
,and 7,, atdie exitare displayed in Figure 7(d), 7(e) and

7(f), respectively. The peak value of 7gg appears at swell

area near die exit as detailed in Figure 7(g). Figure 7(h)
shows maximum value of the temperature at inlet which
then gradually decreases to 1 at the outlet.
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08 Die-swell flow of Oldroyd-B fluid is developed from the
I 04 domain of stick-slip problem and the contour color result
0.2
0 of extrudate swell for We=1 and 1, = 0.88 is shown
(b) u, in Figure 8(a)-8(h). The exhibition of color contour plots
P for the radial velocity, axial velocity, pressure, 7,, T,,
EE , Tzz, Tgp and temperature of swell effect are very
ﬁ similar to those in stick-slip model. Because of size
}51 enlargement phenomenon makes the height of radial
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Figure 7. Stick-slip for Oldroyd-B fluid at We =2. ) Ty
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Figure 8. Die-swell for Oldroyd-B fluid at We=1.

For die-swell flow, the parameters of pressure
drop (Ap), shear stress (7,,) and stress in direction

zz (r,,),andindirection 1T (7,-) are compared with

the result from reference [25] under non-thermal effect
(N) and the outcome of this work for isothermal (I) and
thermal conditions (T). The round brackets containing

parameter with subscripts N, I or T as symbols ( )y,

(); and ()7 indicate the value of those parameter for

the non-thermal effect, and thermal
conditions, respectively.

Table 1 shows the comparison of die-swell flow for
Newtonian and Oldroyd-B fluid between non-thermal,
isothermal and non-isothermal processes. The viscosity
and elongation are greatly proportional to Weissenberg
number the same as pressure drop and stresses. Another
dominant effect to pressure drop is heat conduction but

isothermal

it gives a little significance for 7,-, 7,, and 7gy. The
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stresses 7,, and 7,, slightly drop when Weissenberg
number is 1 conversely to stress 7, .
Table 1. The comparison of die-swell flow for Oldroyd-B fluid

between non-thermal, isothermal
and non-isothermal conditions.

We 0 0.5 1
(Ap)y | 494 | 1453 | 3292
(Ap), | 486 | 1734 | 3759
(Ap)-l- 18.18 17.76 38.26
(tr)y | 094 8.11 9.48
(t), | 094 [ 479 8.65
(tr)7 1.79 4.79 8.65
(t)y | 1514 | 2384 | 19.62
(Tzz)l 10.24 18.99 18.97
(tm)p | 747 | 1899 [ 1897
(Trr)/v 0.52 3.52 12.62
(TI‘I‘)] 1.02 4.72 13.43
(Trr)T 0.99 4.73 13.43
40 31_9237.59 38.26

a3

%,’z 18.18 17341776

glﬂ 494486

0
0 05 1 Ve
mNm/nl
@ (Ap)
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Figure 9. The bar charts of die-swell flow for Oldroyd-B fluid.

The whole data of table 1 are pick up to draw bar
charts as details in Figure 9. Figure 9(a)-9(d) are
compared under non-thermal isothermal and non-
isothermal systems with four-character values of
pressure drops, shear, radial and axial stresses,
respectively. The radial and axial stresses are slightly
different when We equals 1. Heat shows the dominant
effect for Newtonian flow while isothermal and non-
isothermal system give almost the same values for
Oldroyd-B fluid.
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5.3 Result of Pressure-Tooling Flow
At first of the simulation for the pressure tooling

problem with annular die, the appropriate value of 1),

is 0.88 for Oldroyd-B fluid and the high We =2 is chosen
to run for difficult flow. On top edge region, the value of
shear stress starts oscillating as seen in Figure 10 from z
direction at the point -1.50 to 0.50 and the peak is 1.98
near die exit (z=0) as similarly to the result along

bottom line, that generates two waves, the small peak of
0.05at z=-1.10 and the big apex of 0.54 at die outlet.
For Figure 11, the extreme point of axial stress at top
edge is 6.69 whilst the maximal value at the bottom is
0.80 and the small peak appears at the second acute
corner where it contacts with wire. As stated above, the
shear rate of Newtonian and viscoelastic fluids between
isothermal and non-isothermal condition are compared
in Figure 12. The shear rate at the top edge jumps to
maximum value near die exit due to contraction point
where the fluid is pushed out from mold made the free
surface swell. At the top edge, the peaks of shear rate for
isothermal and non-isothermal happen near die exit
with maximum values of 606.41 and 649.46, respectively
but the bottom edge created twice peaks at contraction
point and die exit.
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Figure 10. 7, for isothermal condition.
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Figure 11. 7, for isothermal condition.
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Figure 12. y for isothermal condition.

Table 2. The comparison of pressure-tooling flow for
Oldroyd-B fluid between isothermal
and non-isothermal condition.

We 0.5 1 1.5 2
(up) 1.08 1.07 1.07 1.07
Ut 1.08 1.07 1.07 1.07
(u,), 3.45 3.45 3.45 3.45
(u,)r 341 3.41 3.42 3.42
(TI‘I‘)[ 3.21 1.65 1.12 0.83
(Trr)r 3.25 1.66 1.12 0.84
(Trz)l 8.28 3.98 2.61 1.94
(7,7 8.49 4.07 2.67 1.98
(TZZ)] 26.13 13.18 8.81 6.61
(TZZ)T 26.46 13.33 8.91 6.69




(2'99)1 0.13 0.07 0.05 0.03
(790)7" 0.13 0.07 0.05 0.03
( ) 609.81 607.22 606.64 606.41
Yy
(}/) 656.81 651.62 650.10 649.46
T
(é)l 11.06 8.41 7.40 7.40
(‘é)T 11.42 8.82 7.73 7.71
(Ap)[ 132.09 126.90 125.15 124.27
(Ap)T 1019.80 980.33 967.00 960.31

From Table 2, the heat does not affect velocities
(u,-,u,) butitis significant to pressure and stresses. All

stresses (T,7,T,4,T45,Tgp), the pressure drop (Ap),
the shear rate () and the elongation rate (&) are

reduced when Weissenberg number increases. Under
non-isothermal system, the pressure drop is 6.73 times
greater than that of isothermal system. The shear rate
and elongation rate of non-isothermal case are 7% and
4% of the values for isothermal stage, respectively. The
heat makes the bond of viscoelastic fluid breakdown;
hence, the shear rate is higher for non-isothermal case.
The color contour of pressure-tooling flow with
non-isothermal condition for Oldroyd-B fluid at We =2
is shown in Figure 13. Figure 13(a) displays the radial
velocity approaching zero near die exit and the axial
velocity pattern is annular shape at entrance then the
flow path develops gradually to plug model after the fluid
moves to touch wire at downstream location, so the
uniform rate is the same as wire speed. When the creep
motion of polymer melt moves gently departing die, the
contraction where steep die changes to free surface
causes the swell phenomenon reveal the conservation of
flow rate in accordance with Figure 13(b). Since the flow
is driven by pressure, the force is maximum at entry and
reduces down to zero when moves through the air
outside the die. The measurement of pressure drop
across upstream to downstream is 960.31 as displayed

in Figure 13(c). The color contours of the maximum 7,

, Trz, T4 and Tgg referred to Figures 13(d)-13(g) are
0.84,1.98, 6.69 and 0.03, respectively. All stresses mostly
give little values except for the neighborhood of die exit
since the direction of flow is changed instantly so all
forces are transferred in the system to adjust the new

361

balance. The thermal is maximum at the inlet boundary
and then decreased gradually until it vanishes when the
wire is coated by plastic fluid as seen in Figure 13(h).
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Figure 13. Annular non-isothermal pressure-tooling
flow for Oldroyd-B fluid at We =2.
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5. Conclusion

The simulation of wire-coating process for the
pressure-tooling die, which is the representation of the
extrusion procedure in industry, is studied under
isothermal and non-isothermal condition. The stress
equation of Oldroyd-B model is proposed with the
motion of viscoelastic fluid especially for high density
polyethylene, that corresponds to the selected value of
material parameter. The die-swell and pressure-tooling
flows are expressed via the Navier-Stokes equations in
two-dimensional axisymmetric system under isothermal
and non-isothermal conditions. The numerical solutions
are calculated by semi-implicit Taylor-Galerkin
pressure-correction finite element method with
feedback of pressure-driven velocity flow. The velocity
gradient recovery and the streamline-upwind/Petrov-
Galerkin techniques are used to stabilized the
converging solution.

For die-swell problem of non-Newtonian fluid,
when Weissenberg number is increased, the viscosity
and elongation are increased. The maxima of the shear
stress and other stresses are located near die exit since
the flows are confronted with the contraction point then
the stream path is a suddenly changed to expand the
radial direction known as swell phenomenon. The steep
shear stress occurs at die exit because of high velocity
near die exit. After the flow passes from a stick entry part
to a free exit section, the singularity of severe stress and
steep velocity gradients region will be appeared. The
singularity point of swelling extrusion position is rough
and the free surface path will become shark skin and the
crack of polymer product. For pressure-tooling case, the
thermal effect damages the bonding between chains of
polymer so the heat affects shear rate and pressure drop.
The pressure drop, shear rate and elongation of non-
isothermal system are higher than those for isothermal
condition as the rate of 6.73 times higher for the
pressure drop, 7% higher for shear rate and 4% taller for
elongation. Proper thermal regulation within the
pressure-tooling process is critical to suppress
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premature solidification of the polymeric material and to
ensure sufficient driving capability for the polymer
stream to be conveyed through the die.
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