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Abstract - Incompressible flow in perforated tubes has many 
industrial applications including jet engine cooling. Numerical 
solution methods for multi-dimensional flow models are often 
prohibitively expensive. Therefore, engineers are interested in 
simple and rapid computational methods that are applicable in 
determining velocity and pressure fields in perforated tubes. To 
respond to this demand, the present paper introduces a number 
of such methods. Furthermore, using the aforementioned simple 
methods, the effects of the distribution and diameters of circular 
holes in a perforated tube with a closed end on the flow field are 
thoroughly investigated. It is shown that using a one-
dimensional ideal flow model, analytical solution is possible 
when the holes have equal diameters and are uniformly 
distributed (Case 1). A semi-analytical procedure is presented 
for the ideal flow model when the holes are non-uniformly 
distributed and/or have various diameters (Case 2). To take the 
effects of fluid viscosity into consideration, viscous flow in a 
perforated tube is solved using a numerical solution approach 
(Case 3). A criterion is provided regarding the applicability of 
the ideal flow model. Comparison with experimentally-obtained 
pressure field in a perforated tube shows that the maximum 
error of ideal flow model, when applicable, is less than 20%. The 
numerical viscous flow solution is also validated and excellent 
match with the reference data is observed.   
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Nomenclature 
At tube cross section (m2) 

Aj hole cross section (m2) 
𝐶1, 𝐶2 unknown coefficients in Eq. (24) 

CV Control Volume 

𝑑1, 𝑑2 Constant coefficient in Eq. (2) 

d hole diameter (m) 

D tube diameter (m) 

Eu Euler number ((P − P0) ρu0
2⁄ ) 

𝑓1, 𝑓2, 𝑓3 x-dependent functions in Eq. (1) 

𝑓 Friction factor 

𝐹 dimensionless friction factor 

𝑔𝑠 ratio of manifold length to CV length (L/s) 

𝑔𝑑 ratio of manifold to hole diameter (D/d) 

𝐺𝑚 
the ratio of cross-sectional area of the tube 
to the total discharge area 

i, j counter 

k Pressure recovery factor 

L length of the tube (m) 

n number of holes 

𝑝 pressure (pa) 

𝑝∞ atmospheric pressure (pa) 

Pj dimensionless pressure defined in Eq. (23) 

P0 dimensionless manifold inlet pressure 

𝑅𝑒0 Inlet Reynolds number 

𝑆 Length of a control volume (m) 

t manifold thickness (m) 

u velocity in manifold (m/s) 

𝑈 dimensionless velocity in manifold (u/u0) 

𝑢0 inlet flow velocity (m/s) 

𝑣 jet velocity(m/s) 

�̅� average jet velocity (m/s) 

𝑉𝑗  dimensionless jet velocity (𝑣/𝑢0) 

x axial coordinate (m) 

X dimensionless axial coordinate 

 

Greek symbols 
ρ density (kg/m3) 

λ Parameter defined in Eq. (7) 

Λ dimensionless parameter defined in Eq. (12) 
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1. Introduction 
Manifolds are widely used to distribute fluid in 

flow systems. Perforated tubes, shown in Figure1, 
constitute a subgroup of the manifolds with many 
industrial applications. For example, they are used in 
gasification and drip irrigation systems [1], [2], injection 
of fluids into the core of a nuclear reactor for emergency 
shutdown [3], [4], injection of bubbles to create a 
homogeneous multiphase reaction in chemical reactors 
[5], [6], reducing the exhaust noise in internal 
combustion engines [7], [8], and cooling via jet 
impingement. A particularly interesting application of 
the impinging jets is in the active clearance control 
system of aircraft engines [9], [10]. Figure 2 shows the 
perforated tubes (impingement pipes) that are used to 
cool down the casing of a jet engine turbine. Manifolds 
are used to carry the cooling air from a front section of 
the engine and distribute it around the casing via 
perforated tubes. A number of small holes near the 
closed end of a perforated tube are shown in Figure 3. 
Figure 1 (a), is a model of the actual pipe shown in Figure 
3. The sizes of the holes and the way they are distributed 
along the tube, strongly affect the impinging jet velocities 
and hence the cooling effectiveness and uniformity.   

  

 
(a) 

 
(b) 

Figure 1. A simple perforated tube with a closed-end, a) 3D 
view, b) 2D view. 

 
Figure 2 Perforated tubes (impingement pipes) used to cool 

down the low-pressure gas turbine casing in a jet engine [10]. 
 

 
Figure 3. Part of a closed end perforate tube used in an 

impingement cooling system.  
 

The flow field details in a perforated tube can be 
obtained using computational fluid dynamics [11]-[17] . 
These solutions provide detailed information about the 
flow field; However, the computational cost can be very 
high, especially for tubes with a large number of holes 
[18-19]. Therefore, more versatile tools and methods are 
preferred for rapid engineering estimations.  

 
Discrete and continuous mathematical models 

have also been developed for flow analysis in perforated 
tubes [20]-[30]. The flow governing equations in these 
relatively simple one-dimensional models are obtained 
by enforcing fluid mass and momentum conservations 
for the control volumes defined around the holes, as 
shown in Figure 4.  

 
(a) 
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(b) 

Figure 4. Control volumes around the holes in a perforated 
tube, a) uniformly distributed holes, b) non-uniformly 

distributed holes.  

 
Wang [21] has shown that a rather general one-

dimensional flow model for incompressible flow in 
perforated tubes is obtained in which fluid viscosity, 
discharge coefficients for the holes, and the pressure 
recovery effect due to discharged flow from the holes, 
are all taken into consideration. The mathematical 
structure of the equation for the axial flow velocity along 
the perforated tube in such a one-dimensional model is 
as follows: 
 
𝑑𝑢

𝑑𝑥

𝑑2𝑢

𝑑𝑥2
+ 𝑓1(𝑥)(

𝑑𝑢

𝑑𝑥
)2 + 𝑓2(𝑥)𝑢

𝑑𝑢

𝑑𝑥
+ 𝑓3(𝑥)𝑢

2 = 0          (1) 

 
In this equation, 𝑓1(𝑥) to 𝑓3(𝑥) are 𝑥-dependent 

functions, and 𝑢(𝑥) is the axial fluid velocity as a function 
of 𝑥 (the coordinate along the tube’s axis). To derive Eq. 
(1), it is assumed that the holes are very close to each 
other so that second and higher-order powers of the 
control volume lengths are negligible.       

 
Equation (1) is a highly non-linear second-order 

differential equation with variable coefficients and is 
difficult to solve analytically. For the uniformly 
distributed equal-size holes along the tube, a rather 
simpler equation, Eq. (2), is obtained.  
 
𝑑𝑢

𝑑𝑥

𝑑2𝑢

𝑑𝑥2
+ 𝑑1(𝑥)𝑢

𝑑𝑢

𝑑𝑥
+ 𝑑2(𝑥)𝑢

2 = 0                                   (2) 

 
In Eq. (2) 𝑑1(𝑥) and 𝑑2(𝑥) are variable coefficients, 

proportional to the pressure recovery and the local 
friction factor, respectively. Even this simpler 
mathematical model is again a non-linear second order 
differential equation with variable coefficients and is still 
difficult to solve analytically.  

Wang et al. [21] have provided useful information 
regarding the possible solution procedures for the fluid 
velocity along the tube for a subset of Eq. (2). Some 

information regarding the physics of the flow, as 
predicted by one-dimensional models and some valuable 
results regarding the pressure and velocity fields are 
provided in [21], [23], [31] .  

 
Here, we first drastically simplify the general one-

dimensional flow model in an attempt to separately 
investigate the effects of the physical properties and 
geometrical parameters on the flow distribution in a 
perforated tube. The ideal flow model allows us to focus 
on the geometrical effects. Viscosity-related terms can 
then be included in the model to investigate the physical 
properties and effects. This approach helps to think 
more fundamentally about the applicability of the 
models and possible solution strategies and hopefully 
enrich the already rich research resources on the 
solution of this problem.  

 
The flow of the information in this paper is as 

follows: in the next section, Section 2, a one dimensional 
mathematical model is derived for the ideal flow in a 
segment of a perforated tube.  

Section 3 provides an analytical solution for the 
axial flow velocity of an ideal fluid along a tube with 
uniformly distributed holes with equal diameters. In 
Section 4, a semi-analytical computational method is 
presented to solve the equation for 𝑢(𝑥) in a perforated 
tube with non-uniformly distributed holes carrying ideal 
fluid. Afterwards, in Section 5 a numerical solution 
method is presented to solve the equation for 𝑢(𝑥) in a 
perforated tube carrying a viscous fluid. Section 6, is 
devoted to the presentation of computational results in 
all cases. Finally, Section 7 wraps up the paper with some 
concluding remarks.  

 

2. An Ideal Flow Mathematical Model 
By ignoring the viscous effects on the flow field 

and assuming a perfect discharge scenario, i.e., normal 

and loss-free discharge of the fluid from the holes, the 

following governing equations are obtained for the 

flow in a small segment of the pipe, defined as a control 

volume around a typical hole, as shown in Figure 5 

[21]. 
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Figure 5. Inviscid flow momentum balance for a typical 

control volume defined in a perforated tube.  

 
For the sake of further simplicity, the density is 

assumed to be one (𝜌 = 1 𝑘𝑔.𝑚−3) and in this Section 
the circular holes are similar and uniformly distributed. 
Mass conservation: 
 

𝑣 = −𝑠 (
𝐷

𝑑
)
2 𝑑𝑢

𝑑𝑥
                                                                          (3) 

 
Momentum conservation: 
 
𝑑𝑢

𝑑𝑥
=

−1

2𝑢

𝑑𝑝

𝑑𝑥
                                                                                   (4) 

 
Bernoulli for the discharged flow: 

 

𝑝 = 𝑝∞ +
1

2
𝑣2                                                                            (5) 

 
In these equations, 𝑢 is the fluid velocity along the 

tube, 𝑣 is the discharged jet velocity, 𝑝 is the fluid 
pressure along the tube, 𝑝∞ is the ambient pressure, 𝑆 is 
the length of the control volume, equal to the distance 
between two neighbor holes in this case, and 𝐷 and 𝑑 are 
the tube and hole diameters, respectively. Using Eqs. (3) 
to (5), the following differential equation is obtained for 
the axial flow velocity in the tube: 

 
𝑑2𝑢

𝑑𝑥2
+ 𝜆2𝑢 = 0                                                              (6) 

 
In which: 

 

𝜆2 =
2

𝑠2
(
𝑑

𝐷
)
4
                                                                (7) 

 
Using 𝑢0 (the fluid inlet velocity) and 𝐿 (the tube 

length) as characteristic velocity and length scales, the 
non-dimensional form of Eq. (6) is obtained as follows: 
𝑑2𝑈

𝑑𝑋2
+ 𝛬2𝑈 = 0                                                             (8) 

 
In which 

 

𝑈 ≡
𝑢

𝑢0
                                                                               (9) 

 

𝑋 ≡
𝑥

𝐿
                                                                                (10) 

 

Λ = λL                                                                              (11) 

  

Note that: 
 

Λ2 = 2(
𝐿

𝑆
)
2

(
𝑑

𝐷
)
4

= 2(
𝑔𝑠

𝑔𝑑
2)
2

                                    (12) 

 
In which: 
 

𝑔𝑠 =
𝐿

𝑆
                                                                       (13) 

 

𝑔𝑑 =
𝐷

𝑑
                                                                       (14) 

 
It is now evident that the ideal flow distribution in 

a perforated tube with fixed length 𝐿 and fixed diameter 
𝐷 is governed by two non-dimensional geometrical 
parameters, i.e. 𝑔𝑠,  and 𝑔𝑑. In this study, 𝐿 = 1 𝑚  and 
𝐷 = 1 𝑐𝑚  are assumed constants in all test cases unless 
otherwise stated. Note that 𝑔𝑠 corresponds to the 
number of holes in this case. Therefore, for ideal flow in 
a perforated tube with uniformly distributed equal-size 
circular holes, the number and diameter of holes govern 
the fluid velocity distribution through Eq. (8). 

Equation (8) is a second-order differential 
equation and needs two boundary conditions. Assuming 
a perforated tube with a closed end, the non-dimensional 
boundary conditions are as follows: 

 
𝑈 (𝑋 = 0) = 1                                                            (15) 

 
𝑈 (𝑋 = 1) = 0                                                            (16) 

 
The solution of Eq. (8) with the boundary 

conditions (15 and 16) is discussed in Section 3. Note 
that by determining the 𝑢(𝑥) function, the jet velocities 
can be calculated via Eq. (3), and the pressure field is 
then obtained using Eq. (5). Looking at the equations and 
thinking about the physics of the flow in this simple 
model, it is pretty clear that the flow distribution is the 
result of interactions between the flow inertia (through 
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fluid velocity along the tube) and pressure forces. The 
closed end of the tube has a particularly important role 
in the pressure recovery, given that all of the kinetic 
energy at 𝑋 = 1 is converted to internal (pressure) 
energy. In fact, the geometrical features of the tube and 
holes constrain the pressure field so that the fluid inertia 
is restrained appropriately and the mass conservation is 
satisfied. This is, in fact, an explanation for the role of the 
pressure in incompressible flow.  

To better understand the importance of the role of 
the pressure and the flow adjustment due to the sizes 
and numbers of the holes, let's naively assume that we 
just need to take care of the mass conservation in this 
simple problem. For equal-size circular holes in a tube 
similar to the one shown in Figure 1, the average 
discharged-jet velocity is easily calculated as follows: 

 

�̅� = 𝑢0
𝑔𝑑
2

𝑔𝑠
= 𝑢0

𝐴𝑡

∑ 𝐴𝑗𝑗
= 𝑢0𝐺𝑀                                      (17) 

 
Note that 𝐺𝑀 is defined as the ratio of the cross-

sectional area of the tube (𝐴𝑡) to the total discharge area, 
i. e. the sum of the holes’ areas (∑ 𝐴𝑗𝑗 ). It is obvious that 

the 𝐺𝑀 parameter, as defined in Eq. (17), is an important 
characteristic parameter for perforated tubes. For 
example, if the average jet velocity (�̅�) needs to be 
significantly higher than the tube’s inlet velocity (𝑢0), 𝐺𝑀 
has to be significantly higher than one. Therefore, this 
parameter defines a continuity-based average jet 
velocity for perforated tubes with equal-size circular 
holes. We will compare the calculated jet velocities in a 
perforated tube with equal-size circular holes with �̅�, i.e 
the continuity-based average velocity, to see how the 
pressure field affects the flow distribution through the 
momentum balance.  

With this background information regarding the 
perforated tubes with uniformly distributed holes, it can 
be shown that for variable pitch (distance between the 
holes) and hole diameter (𝑆 = 𝑆(𝑥) and 𝑑 = 𝑑(𝑥)),  Eq. 

(8) is no longer valid throughout the tube, and the 
following equation needs to be solved for the ideal 
(inviscid) flow assumption described previously: 

 
𝑑2𝑈

𝑑𝑋2
+ 𝛬

𝑑(𝛬−1)

𝑑𝑋

𝑑𝑈

𝑑𝑋
+ 𝛬2𝑈 = 0                                      (18) 

 
The coefficients of the second and the third terms 

of Eq. (18) are not constant values, and more 
complicated analytical methods are needed to solve this 
equation. The analytical solution, if obtained, might not 

be in a simple mathematical form. For example, the 
solution might be in the form of a power series. This 
further mathematical complexity is because the holes 
play a much more complicated role in the flow 
distribution along the perforated tube in this case. The 
good news is that we do not need to solve Eq. (18) 
analytically. In Section 4, it is shown that Eq. (8) is still 
applicable locally. We can take the variations of 𝑆 and 𝑑 
into account by advising a semi-analytical approach in 
which consistency conditions are satisfied at the 
boundary faces of control volumes that enclose the holes.  

Now, let’s keep S and d constants (uniform spacing 
and equal-size holes) and include the fluid viscosity 
effect to obtain a third simplified mathematical model. 
For a perforated tube with uniformly distributed equal-
size holes, carrying a viscous fluid, the following one-
dimensional flow model is obtained:   

 
𝑑𝑈

𝑑𝑋

𝑑2𝑈

𝑑𝑋2
+ 𝛬2𝑈

𝑑𝑈

𝑑𝑋
+ 𝐹𝛬2𝑈2 = 0                                   (19)    

 

In Eq. (19), 𝐹 represents 
𝑓𝐿

4𝐷
, in which 𝑓 is the 

friction factor. While pressure drop due the viscosity is 
considered in this model, other real flow effects such as 
pressure recovery factors and discharge coefficients for 
the holes are not taken into consideration.  

Hereafter, for the sake of brevity, the tube with 
uniformly distributed equal-size holes carrying inviscid 
fluid is called Case 1, the tube with non-uniformly 
distributed and/or variable-size holes carrying inviscid 
fluid is called Case 2, and the tube with uniformly 
distributed equal-size holes carrying viscous fluid is 
called Case 3.   

  
3. Analytical Solution of the Equation for Fluid 
Velocity in Case 1 

Equation (8) with boundary conditions (15) and 
(16) can be solved analytically. The standard method for 
finding the general solution of Eq. (8) is by assuming the 
solution structure and then solving the characteristic 
equation. During this process, two integration constants 
appear in the general solution. These constants are 
obtained by constraining the general solution to satisfy 
the boundary conditions (15) and (16). A solution that 
satisfies all of the constraints, i.e., Eq. (8) and boundary 
conditions (15) and (16), is as follows: 

 

𝑈 =
𝑠𝑖𝑛[𝛬(1−𝑋)]

𝑠𝑖𝑛 𝛬
                                                             (20) 
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Using Eq. (20) and the non-dimensional form of 
Eq. (3), non-dimensional jet velocities are obtained as 
given below: 

 

𝑉𝑗 =
√2cos[Λ(1−𝑋𝑗)]

sinΛ
                                                    (21) 

 
Discrete coordinate value described by 𝑋𝑗 in Eq. 

(21), represents the axial coordinate of the  𝑗𝑡ℎ hole and 
𝑉𝑗 is the jet velocity at that position.  

Using Eq. (21) and the non-dimensional form of 
Eq. (5), non-dimensional pressure at the 𝑋𝑗 position is 

obtained as follows: 
 

𝑃𝑗 = 𝑠𝑔𝑛(𝑉𝑗).
𝑐𝑜𝑠2 [Λ(1−𝑋𝑗)]

𝑠𝑖𝑛2Λ
                                       (22) 

 
The non-dimensional relative pressure in Eq. (22) 

is defined as given below: 
 

𝑃𝑗 =
𝑝𝑗−𝑝∞

𝑢0
2                                                                (23) 

 
Equations (20), (21), and (22) can be easily plotted 

for various Λ values. Given the relation between Λ, 𝑔𝑠 and 
𝑔𝑑, we can also separately change 𝑔𝑠 and 𝑔𝑑 to 
investigate the effects of the number of holes and hole 
diameter on the velocity and pressure fields in this case. 
Note that both 𝐿 and 𝐷 are assumed constants in the 
current study.   

The simplified model in Case 1 leads to a governing 
equation that depends only on geometric parameters. 
This not only allows for a separate analysis of how 
geometrical features, such as hole spacing and diameter, 
affect the flow distribution without interference from 
physical properties like viscosity, but also provides an 
analytical solution that serves as a reliable initial 
estimate for more complex, viscosity-dependent cases. 

 

4. Semi-Analytical Solution of the Equation for 
Fluid Velocity in Case 2 

Instead of seeking an analytical solution to Eq. 
(18), which is valid throughout a perforated tube with 
variable Λ, we can still assume that Eq. (8) is locally valid 
in a discrete solution domain. Therefore, the general 
analytical solution of Eq. (8) in the 𝑖𝑡ℎ control volume 
provides the velocity distribution throughout that 
control volume. In contrast to Case 1, the Λ parameter is 

not a constant value in this case, and piecewise analytical 
solutions have to be sought in Case 2. 

The general solution of Eq. (8) for the velocity 
distribution in the 𝑖𝑡ℎ control volume can be written in 
the following form: 

 
𝑈𝑖(𝑋) = 𝐶1(𝑖) 𝑠𝑖𝑛 𝛬𝑖𝑋 + 𝐶2(𝑖) 𝑐𝑜𝑠 𝛬𝑖𝑋                       (24) 

 
Equation (24) needs two boundary conditions to 

provide the velocity distribution in the  𝑖𝑡ℎ control 
volume. To explain how the constants in Eq. (24) are 
determined, let’s consider a very simple perforated tube 
shown in Figure 6. The velocity distribution throughout 
this tube is described by the following velocity 
distribution segments associated with control volumes 
1, 2, and 3 respectively: 

 
𝑈1(𝑋) = 𝐶1(1) sinΛ1𝑋 + 𝐶2(1) cosΛ1𝑋                         (25) 
 

𝑈2(𝑋) = 𝐶1(2) sin Λ2𝑋 + 𝐶2(2) cosΛ2𝑋                      (26) 

 
𝑈3(𝑋) = 𝐶1(3) sin Λ3𝑋 + 𝐶2(3) cosΛ3𝑋                       (27) 
 

Note that there are six unknowns, i.e. 𝐶1(𝑖) and 
𝐶2(𝑖) for 𝑖 = 1, 2, 3, that need to be determined.  

 

 
Figure 6. A control volume-based discrete model using 
piecewise analytical solutions for the fluid velocity in a 

perforated tube.  
 

In this case the closure equations, required to close 
the system, are obtained from the boundary conditions 
and continuity constraints for the velocity and velocity 
slope (rate of change of velocity with respect to 𝑋) at the 
control surfaces. These constraints for the simple case 
shown in Figure 6 are given below: 
The inlet boundary condition (𝑋 = 0): 

 
𝑈1(0) = 1                                                                                 (28) 
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The continuity constraint on the velocity magnitude at 
𝑋 = 0.25: 

 
𝑈1(0.25) = 𝑈2(0.25)                                                            (29) 
 
The continuity constraint on the velocity slope at 𝑋 =
0.25: 

 
𝑑𝑈1(0.25)

𝑑𝑋
=

𝑑𝑈2(0.25)

𝑑𝑋
                                                                 (30) 

 
The continuity constraint on the velocity magnitude at 
𝑋 = 0.75: 

 
𝑈2(0.75) = 𝑈3(0.75)                                                             (31) 
 
The continuity constraint on the velocity slope at 𝑋 =
0.75: 

 
𝑑𝑈2(0.75)

𝑑𝑋
=

𝑑𝑈3(0.75)

𝑑𝑋
                                                                (32) 

 
The boundary condition at the end of the tube (𝑋 = 1) 

 
𝑈3(1) = 0                                                                                 (33) 
 

Equations (28) to (33) provide six constraints for 
the six unknown coefficients in Eqs. (25) to (27). Using 
the general solution structure given in Eq. (24), the 
aforementioned constraints can be written in expanded 
forms.  For example, the expanded form of Eq. (30) is as 
follows: 

 
𝐶1(1) Λ1cos 0.25 Λ1 − 𝐶2(1)Λ1 sin 0.25 Λ1 =

 𝐶1(2) Λ2cos 0.25 Λ2 − 𝐶2(2)Λ2 sin 0.25 Λ2                         (34) 
 

In general, for 𝑛 control volumes, there are 2𝑛 
unknown constants associated with the segmental 
velocity distributions. These unknowns are obtained by 
simultaneous solution of a set of linear algebraic 
equations. The elements of the coefficient matrix in the 
set of equations depend solely on the Λ𝑖 and X𝑖 values. 
The boundary conditions appear in the right-hand side 
vector of the matrix equation corresponding to the set of 
linear algebraic equations for the unknown 𝐶𝑗(𝑖) values.  

Equation (35) shows the general structure of the 
linear system in the matrix form for the simple case 
shown in Figure 6. Non-zero values in the coefficient 
matrix are represented by the multiplication sign (∗).  

 

[
 
 
 
 
 
0 ∗ 0
∗ ∗ ∗
∗ ∗ ∗

    
0 0 0
∗ 0 0
∗ 0 0

0 0 ∗
0 0 ∗
0 0 0

    
∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗]

 
 
 
 
 

{
 
 

 
 
𝐶1(1)
𝐶2(1)
𝐶1(2)
𝐶2(2)
𝐶1(3)
𝐶2(3)}

 
 

 
 

=

{
  
 

  
 
1
0
0
0
0
0
0}
  
 

  
 

                           (35) 

 
The solver options in MATLAB can easily solve the 

equation set. Row interchange before the solution might 
be necessary to avoid singularities. The solver takes care 
of such matrix structural problems before the solution.  

This semi-analytical formulation enables efficient 
evaluation of the velocity field in perforated tubes with 
non-uniform perforation properties, without relying on 
full 3D CFD simulations. While typical CFD studies 
require millions of mesh elements even for relatively 
short manifolds (e.g., 20 million cells for 20 holes [14]), 
the present approach reduces the problem to a tractable 
set of linear algebraic equations with significantly lower 
computational cost. This makes it a practical and scalable 
alternative for preliminary design and parametric 
studies. 

 
5. Numerical Solution of the Equation for Fluid 
Velocity in Case 3 

In this case, Eq. (19) is the mathematical model for 
the flow in a perforated tube with uniformly distributed 
equal-size holes. Note that while Λ  is constant, the 
parameter F changes along the tube due to the variation 
of friction factor 𝑓. To employ Eq. (19) and calculate the 
velocity distribution along the tube, we try to solve this 
equation within the individual control volumes. 
Assuming a configuration similar to the one shown in 
Figure 6, the velocity field within the  𝑖𝑡ℎ control volume 
is governed by the following constraints: 

 
𝑑𝑈𝑖

𝑑𝑋

𝑑2𝑈𝑖

𝑑𝑋2
+ Λ2𝑈𝑖

𝑑𝑈𝑖

𝑑𝑋
+ 𝐹𝑖Λ

2𝑈𝑖
2 = 0                                        (36) 

 
𝑈𝑖(𝑋 = 𝐿𝑒𝑓𝑡 𝑓𝑎𝑐𝑒) = 𝑈𝑖𝐿                                                     (37) 
 
𝑈𝑖(𝑋 = 𝑅𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑒) = 𝑈𝑖𝑅                                                  (38) 
 

Note that in this case we do not have analytical 
solution for the governing equation. This has two 
implications. First, we need to solve Eq. (36) using 
numerical methods. And, second, an iterative approach 
is required to impose the continuity constraints on the 
facial values of velocity and velocity slope. For the 
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numerical solution of Eq. (36), the shooting method, 
assisted with the well-known 4th-order Runge-Kutta 
method, is employed. This is carried out by defining a 
number of auxiliary points within control volumes. 
These points are uniformly distributed and the distance 
between two consecutive points is shown by ∆. 

Again, let’s consider the flow in the very simple 
perforated tube shown in Figure 6. The iterative 
numerical solution approach starts with providing 
guessed velocity values at all internal faces (control 
surfaces) as follows: 

 

𝑈(𝑋 = 0.25) = 𝑈0.25
1                                                              (39) 

 
𝑈(𝑋 = 0.75) = 𝑈0.75

1                                                              (40) 
 

With the guessed velocity values at control 
surfaces, i.e. 𝑈0.25

1  and 𝑈0.75
1 , Eq. (36) can be solved in all 

three control volumes in Figure 6, to obtain 𝑈1
1(𝑋),

𝑈2
1(𝑋), and 𝑈3

1(𝑋), i.e. the velocity distributions inside 
control volumes. Here, the subscript in 𝑈𝑖

1(𝑋), 𝑖 = 1, 2, 3, 
represents the control volume number and the 
superscript represents the iteration number. For 
example, 𝑈1

1(𝑋) represents the velocity distribution in 
the first control volume at the first iteration. 

Given the fact that guessed velocity values have 
been used at the control surfaces, a correction procedure 
is required to update the boundary values used to solve 
Eq. (36) in the control volumes. This is done by requiring 
the continuity of the velocity slopes at internal control 
surfaces as given in Eqs. (30) and (32). For example, the 
following constraint should be imposed at 𝑋 = 0.25 in 
Figure 6:  

 
𝑑𝑈1(0.25)

𝑑𝑋
=

𝑑𝑈2(0.25)

𝑑𝑋
                                                                 (41) 

 
To carry out this task, the numerical solutions at 

the neighboring control volumes are employed as 
follows:   

 
𝑑𝑈1(0.25)

𝑑𝑋
= 𝑈𝐿

′(0.25) =
𝑈1(0.25)−𝑈1(0.25−∆)

∆
                      (42) 

 
𝑑𝑈2(0.25)

𝑑𝑋
= 𝑈𝑅

′ (0.25) =
𝑈2(0.25+∆)−𝑈2(0.25)

∆
                   (43) 

 
Note that there is no guarantee that Eq. (41) is 

satisfied when the velocity slopes are calculated using 
Eqs. (42) and (43). The difference between the current 

estimation of 𝑈𝐿
′(0.25) and 𝑈𝑅

′ (0.25) can now be used to 
update the fluid velocity at 𝑋 = 0.25: 

 

𝑈𝑗+1(0.25) =
1

2
(𝑈1

𝑗(0.25 − ∆) + 𝑈2
𝑗(0.25 + ∆) +

∆(𝑈′𝐿
𝑗(0.25) − 𝑈′𝑅

𝑗 (0.25)))                                     (44) 

 
To better understand the rationale behind Eq. 

(44), one might think of it as an interpolation formula 
that takes the average of two truncated Taylor series 
approximations of 𝑈(𝑋 = 0.25), using the most recent 
available solutions in neighboring control volumes. 
Similar procedure is carried out at all other internal 
control surfaces. The iterative process ends when the 
velocity slope continuity is satisfied at all internal control 
surfaces. The actual convergence criterion that is 
implemented in this study is as follows: 

 

𝑚𝑎𝑥 |𝑈′𝐿
𝑗
− 𝑈′𝑅

𝑗
| < 10−8                                                       (45) 

 
Equation (45) means that upon convergence, the 

difference between the right and left estimates for the 
velocity slope values at control surfaces are all less than 
10−8. The number of auxiliary points that are used for 
the numerical integration of Eq. (36) in control volumes 
is user defined. In this study, 99 auxiliary points are used 
within each control volume.  

Additionally, to calculate the friction factor (𝑓), the 
well-known Darcy friction factor correlations can be 
used. 

 

𝑓 =
64

𝑅𝑒
     for 𝑅𝑒 < 2200                                                                 (46) 

 

𝑓 =
0.3164

𝑅𝑒0.25
    for 2200 < 𝑅𝑒 < 105                                           (47) 

 

𝑓 = 0.0032 +
0.221

𝑅𝑒0.237
    for  105 < 𝑅𝑒                              (48) 

 
Figure (7) shows the flow chart of the iterative 

numerical solution in the simple test case shown in 
Figure 6.  
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Figure 7. Flow chart of the iterative numerical solution 

algorithm in Case 3 for the perforated tube model shown in 
Figure 6.  

 

6. Results and Discussions  

6.1. Analytical Solution for the Case 1 
Equation (20), which is the analytical solution of 

Eq. (8), is used to draw the non-dimensional fluid 
velocity distribution along the tube for three different 
values of Λ as shown in Figure 8. As expected, 𝑈(𝑋) tends 
to be closer to a linear distribution for smaller Λ values. 
In fact, for the limiting case of Λ = 0, the velocity 
distribution is strictly linear. For higher values of Λ, the 
velocity distribution is not linear, pointing to a non-
uniform discharge from the holes. It should be noted that 
symbols used in Figure 8 are used to show the fluid 
velocities at a few 𝑋 locations along the tube.  

 

 
Figure 8. Ideal flow distribution in a perforated tube with 

uniformly distributed equal-size holes (Case 1). 
 

Figure 9 shows the distribution of the discharge 
velocities from the holes. Equation (21) is used to draw 
the diagrams, and jet velocities are scaled using the first 
jet velocity for better comparison. Note that for Λ = 1, 
the jet velocities are nearly equal. In contrast, jet 
velocities near the end of the tube are considerably 
greater than the velocity of the first jet for Λ = 1.5. 

 

 
       Figure 9. Non-dimensional jet velocities in Case 1, 

normalized with the velocity of the first jet. 
 

The normalized relative pressure distribution 
along the tube can also be drawn using Eq. (22), as 
shown in Figure 10. The build-up of pressure at the 
closed end of the tube is observed in all cases.  
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Figure 10. Non-dimensional relative pressure distribution 

along the tube in Case 1.  
 

As mentioned before and given in Eq. (12), the 
parameter Λ is a function of two geometrical parameters 
represented by 𝑔𝑠 and 𝑔𝑑. For a perforated tube with a 
fixed length and diameter, 𝑔𝑠 varies with S and 𝑔𝑑 varies 
with d. It makes sense to see how these non-dimensional 
parameters affect the flow distribution in case 1.  

  
In Figure 11 (a), the diameters of a fixed number of 

holes (corresponding to 𝑔𝑠 = 100) are changed to see 
the effect of 𝑔𝑑 (or 𝑑) on the axial flow velocity. In a 
similar manner, the number of equal size holes 
(corresponding to 𝑔𝑑 = 15) are changed in Figure 11 (b) 
to see the effect of 𝑔𝑆 (or 𝑆) on the axial flow velocity. 
Obviously, the corresponding values of Λ can be easily 
calculated using Eq. (12) in each case. An important 
observation in Figure 11 (b) is for the case 𝑔𝑑 = 15 and 
𝑔𝑠 = 300, which corresponds to Λ ≅ 1.885. Note that for 
this case, the axial velocity increases in the initial section 
of the tube. This is possible only if the flow is sucked into 
the holes instead of being discharged. In fact, the initial 
part of the perforated tube with Λ ≅ 1.885 acts like a jet 
pump instead of discharging the fluid. Corresponding 
values of normal velocities across the holes and pressure 
distributions are shown in Figs. 12 and 13, respectively. 
In some cases, negative values of velocity and pressure 
are consistent with the observations in Figure 11.  
 

 
(a) 

 

 
(b) 

 
             Figure 11. Axial flow velocity distribution in Case 1, 

(a) 𝑔𝑠 = 100, (b) 𝑔𝑑 = 15. 

 

 
(a) 
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(b) 

 
Figure 12. Jet velocity distribution in Case 1, (a) 𝑔𝑠 = 100, (b) 

𝑔𝑑 = 15. 
 

 
(a) 

 
(b) 

Figure 13. Pressure distribution in Case 1, (a) 𝑔𝑠 = 100, (b) 
𝑔𝑑 = 15. 

 

6.1.1. Understanding the Role of the Pressure Field 
As mentioned before, the pressure field affects the 

flow field so that the jet velocities are not the same as the 
continuity-based average discharge velocity �̅�. In Figure 
14, jet velocities obtained for 𝑔𝑑 = 15 and 𝑔𝑠 = 200, are 
compared to �̅�. Note that due to the pressure build-up 
near the end of the tube, velocities of the jets coming out 
of the holes after 𝑋 = 0.433 are higher than the average 
velocity �̅�. Necessarily, due to the mass conservation 
constraint, the jet velocities near the tube’s inlet are less 
than �̅�. This is how the pressure field competes with the 
inertia in this simple flow model to re-distribute the fluid 
between the holes.   

 

 
Figure 14. Effect of the pressure field on the flow distribution 

between holes in Case 1.  
 

6.2. Validation of the Semi-Analytical Solution 
Approach 

To validate the semi-analytical solution approach, 
described in Section 4, this method is used to solve the 
flow problem in Case 1. Comparison between the 
analytical solution (A) and semi-analytic solution (SA) in 
Figure 15 shows that solutions from the two methods 
match perfectly. Once again, it should be remembered 
that U values at just a few locations along the tube are 
marked with symbols for clarity.   
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Figure 15. Validation of the semi-analytical method.  

 
6.3. Semi-Analytical Solutions for the Case 2 
6.3.1. Effect of Non-Uniformity in Hole’s Spacing (𝑺 =
𝑺(𝒙)) 

The semi-analytic solution method makes it 
possible to use the analytical solutions in the control 
volumes in a piecewise/discrete manner. Therefore, the 
sizes of the control volumes, or equivalently distances 
between the holes, need not be equal. Two extreme 
scenarios regarding the non-uniform distribution of 
equal-size holes (𝑔𝑑 = 15) are shown in Figure 16. In the 
upper tube in Figure 16, the holes are getting closer 
toward the end of the tube in a linear manner (so that 
𝑔𝑠(1) = 0.75 𝑔𝑠(𝑛)), and, in the lower tube, the distances 
between the holes increase linearly (so that 𝑔𝑠(1) =
1.25 𝑔𝑠(𝑛)). Note that 𝑛 is the number of holes. We call 
these two scenarios as contracting and expanding 
scenarios, respectively. 

 

 
Figure 16. Two scenarios for non-uniform distribution of 

equal-size holes (𝑔𝑑 = 15). 
 

Figure 17 (a) shows the effect of the variable 
spacing on the jet velocity distribution, and Figure 17 (b) 
shows the associated pressure distributions along the 
tube. Note that for the expanding scenario (𝑔𝑠(1) =
1.25 𝑔𝑠(𝑛)), which corresponds to ascending 𝑆(𝑖) values, 
higher jet velocities are obtained near the end of the tube 
and for the contracting scenario (𝑔𝑠(1) = 0.75 𝑔𝑠(𝑛)), 
which corresponds to descending 𝑆(𝑖) values, smaller jet 
velocities are obtained closer to the end of the tube as 

expected. This means that changing the spacing between 
equal-size holes can affect or control the pressure 
distribution and jet velocities along the tube.   

 

 
(a) 

 
(b) 

Figure 17. Distribution of jet velocities (a) and pressure 
distribution (b) for non-uniform distribution of holes (𝑔𝑑 =

15).  
 

6.3.2. Effect of the Non-Uniformity in Holes’ Sizes 
(𝒅 = 𝒅(𝒙)) 

To examine the effects of the hole size distribution 
on the flow field in a perforated tube, again, two 
scenarios are considered, as shown in Figure 18. Two 
extreme scenarios regarding the variable-size holes that 
are uniformly distributed along the tube (𝑔𝑠 = 100), are 
shown in Figure 18. In the upper tube in Figure 18, the 
holes are getting smaller towards the end of the tube in 
a linear manner (so that 𝑔𝑑(1) = 0.75 𝑔𝑑(𝑛)), and in the 
lower tube, the holes’ diameters increase linearly (so 
that 𝑔𝑑(1) = 1.25 𝑔𝑑(𝑛)). 
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Figure 18. Two scenarios for the variation of holes’ diameters 

along the tube (𝑔𝑠 = 100). 
 

Figure 19 (a) shows the effect of the diameter 
variation of the holes on the jet velocity distribution, and 
Figure 19 (b) shows the associated pressure 
distributions along the tube. Again, it is noted that the 
hole diameter variation can be used to control the flow 
distribution in a perforated tube.  

 

 
(a)    

   
(b) 

Figure 19. Distribution of jet velocities (a) and pressure 
distribution (b) for unequal-size holes evenly distributed 

along the tube (𝑔𝑠 = 100).  
 

Note that the distribution functions used to 
determine the 𝑆(𝑖) and 𝑑(𝑖) values, i.e. 𝑆(𝑥) and 𝑑(𝑥) 

functions, need not be linear in Case (2), and non-linear 
distributions provide more flexibility to control the 
pressure and flow distribution along the perforated tube.   

 
 6.3.3. The Cumulative Effect of 𝒈𝒔 and 𝒈𝒅 

Based on the results presented in the previous 
Sections, i.e., Sections 6.3.1 and 6.3.2, it is also possible to 
select proper values of  𝑔𝑠 and 𝑔𝑑 so that a rather 
uniform pressure distribution, and hence uniform jet 
velocities along the tube, is obtained. Figure 20 shows 
one possible scenario: an ascending 𝑆(𝑥) function 
combined with a descending 𝑑(𝑥) function. The pressure 
distribution corresponding to a uniformly distributed 
equal-size holes is also shown for comparison. Various 
desired pressure distributions can be obtained through 
try-and-error or optimization methods. 

 

 
Figure 20. A possible scenario for keeping the pressure nearly 

constant along a perforated tube with a closed-end carrying 
ideal fluid. 

 

6.4. Validation of the Numerical Solution Approach 
in the Case 3 

To validate the numerical solution algorithm, 
described in Section 5 and depicted in Figure 7, an 
analytical solution for Eq. (19), provided by Singh and 
Rao [32], is employed. In the validation test case, Λ and 𝐹 
values are set to 6.59 And 2.25 respectively. As Figure 21 
shows, there is an excellent match between the analytical 
solution and the numerical results.  
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Figure 21. Validation of the Numerical method in the Case 3. 

 

To evaluate the validity of the numerical solution 
against the experimental results, which include all real 
physical phenomena, experimental data from two 
distinct perforated tubes, originally reported by 
Kulkarni [33], are employed. Each tube, characterized by 
the design parameters listed in Table 1 is tested under 
two different inlet velocities. The experimentally 
measured hole velocities are compared with the 
corresponding numerical predictions, as shown in 
Figure 22. The symbols in Figure 22 represent the 
velocities at specific holes along the tube. The 
comparison demonstrates good agreement between the 
numerical results and experimental data, with a 
maximum deviation of less than 10%. 

 
Table 1. Geometric design specifications for the two 

perforated tube configurations reported in [33]. 

 D (mm) n d(mm)  S L (m) 
Pipe 4 28 35 3 4d 0.42 
Pipe 8 28 93 2 8d 1.5 

 

          
(a) 

 
(b) 

Figure 22. Validation of the Numerical method in the Case 3, 
(a) pipe 4 and (b) pipe 8 [33]. 

 
6.5. Numerical Solutions for the Case 3 

The viscous flow examples provided in this section 
of the paper shed some light on some of the effects of 
viscosity through the friction factor. The objective is to 

estimate the effect of the parameter 𝐹 =
𝑓𝐿

4𝐷
 on the flow 

distribution in a perforated tube with equal-size 
uniformly distributed holes (10 holes, 𝐿 = 1 𝑚, 𝐷 =
10 𝑚𝑚, and 𝑑 = 3 𝑚𝑚).  

First, let’s assume constant friction factors. 
Discharged jet velocities and normalized relative 
pressure distributions at the holes’ positions are shown 
in Figure 23 for different values of friction factor. Figure 
23 (a) shows the effect of friction factor on the 
distribution of jet velocities. Notice that the highest jet 
velocities are obtained for 𝐹 = 0, i.e. ideal flow. Higher 
values for 𝐹 results in lower and more uniform jet 
velocities so that for 𝐹 = 1.25, rather uniform jet 
velocities are obtained. Very high values of 𝐹, i.e. 𝐹 = 2.5 
in this example, results in lower jet values near the end 
of the tube. The corresponding pressure distributions 
are shown in Figure 23 (b). As expected, while pressure 
recovery is dominant in the 𝐹 = 0 case, pressure loss due 
to the friction is the dominant phenomenon in the 𝐹 =
2.5 case.  

Including friction in the flow modeling of real 
manifolds is crucial for improving prediction accuracy 
compared to the ideal, frictionless model. Unlike the 
pressure recovery effect caused by jet discharge, the 
axial viscous force reduces the pressure buildup along 
the manifold. Since the local pressure determines the jet 
outflow, a more accurate pressure prediction leads 
directly to a more accurate estimation of the lateral flow 
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distribution. In contrast, neglecting friction results in a 
pressure curve that increases more steeply along the 
manifold, potentially overestimating jet velocities near 
the end. This discrepancy becomes more pronounced in 
long manifolds or when handling more viscous fluids, 
where friction can become the dominant effect—leading 
to a decreasing pressure trend, as observed in Figure 
23(b). 

 
(a) 

 

 
(b) 

Figure 23. Examples of solutions in Case 3 for constant 
friction factor. Jet velocities (a) and non-dimensional relative 

pressures (b). 
 

Now, the friction factor is considered a variable 
quantity. In this case, the friction factor is a function of 
the Reynolds number. Computational results are 
provided in Figure 24 for both laminar (𝑅𝑒0 =
2000) and turbulent (𝑅𝑒0 = 50000) flows. The inlet 
Reynolds number (𝑅𝑒0) is defined using 𝐷 (the diameter 

of the tube) as the length scale and 𝑢0 as the 
characteristic velocity.  

The distributions of jet velocities in these test 
cases are shown in Figure 24 (a) and the corresponding 
pressure distributions are shown in Figure 24 (b). To 
examine the effect of the variation of  𝐹 along the tube on 
the jet velocity and pressure distribution in both laminar 
and turbulent flow examples, results corresponding to 
the inlet values of 𝐹 are also provided and labeled with 
𝐹 = 𝑐𝑡𝑒. Note that both jet velocities and pressure 
distribution are more sensitive to the variation of 𝐹 in 
the turbulent flow case.   

 

 
(a) 

 
(b) 

 
Figure 24. Examples of solutions in Case 3 for variable 

friction factor. Jet velocities (a) and non-dimensional relative 
pressures (b). 
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7. Concluding Remarks   
This study presents a computational framework 

for predicting both inviscid and viscous flow in 
perforated tube manifold systems. The key contribution 
of this work lies in the development of a novel, and rather 
simple, numerical technique that allows engineers to 
vary both the diameter and spacing of perforations along 
the tube to achieve a desired flow distribution. 

To enhance understanding and simplify the 
implementation, the method was first applied using ideal 
(inviscid, incompressible) flow model. This approach not 
only provides valuable insight into the influence of 
geometric parameters on flow behavior, but also serves 
as a reliable initial guess for the more complex viscous 
flow simulations. Results from the ideal flow model 
clearly demonstrate the critical role of hole spacing and 
diameter variation in optimizing flow distribution. 

Subsequently, the methodology was extended to 
viscous flows, incorporating the effects of fluid viscosity 
through an iterative numerical solution algorithm. 
Comparison with experimental data shows strong 
agreement, with a maximum deviation of less than 10%, 
thereby validating the accuracy of the viscous model. 

Additionally, a general mathematical framework 
capable of representing a wide range of geometrical and 
physical complexities in perforated manifolds has been 
formulated. The solution strategy for this extended 
model will be the focus of future work. 

 
To wrap up the paper, it is very informative, and 

practically useful, to examine the range of the validity 
and applicability of the ideal flow model before making a 
few comments about the viscosity effects in this last 
section of the paper.  

 
7.1. Limitations of the Ideal Flow Model 

To discuss the range of the validity of the ideal flow 
model, it is very useful to first show the extent to which 
the ideal flow results comply with the predictions of 
viscous flow models. In Figure 25, a comparison has been 
made using the viscous flow results provided by Wang  
[23]. In the viscous flow results from [23], only the effect 
of friction is considered, and ideal discharge from the 
holes is assumed. It is clear that the semi-analytical ideal 
flow results in this case, in which Λ = 1, are qualitatively 
relevant and rather close to the viscous flow results 
(maximum error around 20%). The pressure drop due to 
the viscosity effects is observed in Figure 25. Note that 

the Euler number (Eu =
𝑃−𝑃0

𝜌𝑢0
2 ) is reported in [23]. Also, 𝐸, 

mentioned in Figure 25, represents the 
𝐿

𝐷
 ratio and 𝑅𝑒0 

represents the Reynolds number. 

 
Figure 25. Comparison of ideal and viscous flow results in a 

perforated tube. 
 

Further studies using the ideal flow model show 
that the solutions are not physically justified for Λ values 
greater than π/2. In fact, for Λ values greater than 1.57, 
the holes near the inlet suck the fluid instead of 
discharging it. Furthermore, lack of viscosity makes it 
possible for the fluid to go through strange maneuvers 
like the one shown in Figure 26 for Λ = 9. It is well 
known that the ideal flow models may predict unrealistic 
flow accelerations/decelerations and/or sudden 
changes in the flow direction. Consecutive negative and 
positive axial velocities in a tube, as shown in Figure 26, 
are not practically feasible. Therefore, care should be 
taken whenever an ideal flow model is used to analyze or 
predict the flow distribution in perforated tubes. Here, 
we recommend the Λ value as a guide in this regard. 

 

 
Figure 26. An example of an unrealistic ideal flow solution. 
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 Ideal flow model is an attractive choice for the 
rough and initial evaluation of the effects of the 
geometrical parameters. As discussed thoroughly, for 
the class of perforated tubes shown schematically in 
Figure 1, the important geometrical parameters are 𝑔𝑠 
and 𝑔𝑑. This means that for a given tube (𝐿 and 𝐷 fixed), 
the only design parameters are the spacing or pitch (𝑠) 
and diameter (𝑑) of the holes. When 𝑠 and/or 𝑑 vary 
arbitrarily along the tube, analytical solution of the 
governing equation for the velocity field along the tube 
becomes prohibitively difficult and the numerical recipe 
prescribed in this paper provides a handy computational 
tool.   

 
7.2. Comments on the viscous flow results 

Complex physical phenomena occur in a 
perforated tube carrying a viscous fluid. Pressure loss 
due to the fluid friction, losses associated with the flow 
across a hole, including the vena-contracta phenomenon, 
and pressure recovery when the fluid passes over a hole 
in a tube are all real flow effects that are very difficult to 
model accurately. In the viscous flow results in this 
paper, the skin friction is taken into consideration and 
the pressure recovery is considered for a simple case in 
which the discharged jets are exactly normal to the axis 
of the tube. Results show that the pressure distribution 
in the tube, which ultimately controls the distribution of 
jet velocities, is governed by two conflicting factors: 
pressure drop due to the friction and pressure rise due 
to the pressure recovery.  

Further studies have been carried out to include 
more real flow phenomena in the mathematical model 
and to take into consideration simultaneous effects of 
the physical and geometrical parameters on the flow 
through perforated tubes. Discussions regarding 
solution strategies and results for these more 
complicated cases are beyond the scope of the present 
paper.  
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