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Abstract – This study proposes a low-dimensional 
thermoacoustic model for predicting pressure fluctuations in 
lean-burn combustion systems. Traditional monitoring 
approaches based solely on experimental data or physical 
models lack accuracy and responsiveness for real-time 
applications. To address this limitation, a linearized acoustic 
wave equation incorporating heat release fluctuations and flow-
induced acoustic sources was formulated using conservation 
laws. A finite element Analysis (FEA) model was developed and 
implemented in the time domain via the Newmark-𝛽 scheme. A 
simplified Rijke tube model was constructed, with input data 
such as temperature distribution derived from high-speed flame 
image analysis, enabling computational efficiency and near-
real-time prediction without CFD. Experimental validation was 
conducted with a premixed combustor under various air flow 
rates and burner positions. The predicted and observed pressure 
signals showed increasing amplitude with leaner mixtures. The 
correlation coefficients for the peak frequencies of the first and 
second modes were 0.77 and 0.67, respectively. Damping ratios 
estimated using Hilbert transform and curve fitting yielded a   
correlation coefficient of 0.73. The most unstable flame location 
corresponded to the position of maximum acoustic pressure 
gradient, consistent with the theoretical forcing term 
formulation. These results demonstrate the model’s capability to 
capture combustion instability trends and its potential for 
future integration with data assimilation and machine learning 
techniques. 
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1. Introduction 
In recent years, the demand for more efficient and 

safer operation of industrial systems has underscored 
the urgent need to advance health monitoring 
technologies for combustion devices. Traditional 
monitoring approaches have relied solely on either 
observational data or physics-based mathematical 
models; however, these methods, when used 
independently, are often inadequate—particularly for 
real-time state estimation and anomaly detection. To 
address these limitations, data assimilation techniques 
that combine observational data with mathematical 
models have garnered increasing attention [1] – [3]. The 
objective of this study is to develop a low-dimensional 
thermoacoustic model capable of real-time prediction 
and to lay the groundwork for its future integration with 
data assimilation frameworks. Data assimilation not only 
enhances the accuracy of model-based predictions but 
also enables real-time estimation of system states, 
providing significant advantages for the control of 
combustion devices and prompt response to abnormal 
operating conditions. These benefits can lead to 
improved operational efficiency, enhanced safety, and 
prolonged equipment lifespan. Furthermore, data 
assimilation enables estimations that account for subtle 
variations and nonlinear behaviors often neglected by 
conventional models, thereby deepening the 
understanding of complex combustion phenomena. 
Nóvoa, Noiray, Dawson, and Magri [4] demonstrated the 
potential of real-time monitoring by developing a digital 



 147 

twin of thermoacoustic instabilities, employing Kalman 
filtering to estimate the dynamic evolution of azimuthal 
combustion oscillations. Sarkar et al. [5] introduced a 
data assimilation-based prediction framework for 
combustion instabilities in a laboratory-scale combustor, 
achieving high-accuracy predictions through the 
integration of sensor measurements and model data. In 
a related effort, Banaszuk, Ariyur, Krstić, and Jacobson 
[6] proposed an adaptive control algorithm to suppress 
combustion instabilities in gas turbine engines by 
combining an extended Kalman filter-based frequency 
estimator with a phase-shift controller to modulate fuel 
injection in real time. 

In this study, we focus on the pressure fluctuations 
in combustion devices and aim to construct a low-
dimensional model, rapid predictions can be achieved 
with reduced computational cost, and, in the future, by 
integrate this model with data assimilation methods, we 
aim to build a more accurate and efficient framework for 
real-time state estimation and prediction. Therefore, to 
predict and analyze combustion-induced pressure 
fluctuations, it is essential to first formulate the 
governing thermoacoustic system, as described in the 
following section. 

 

2. Formulation of Thermoacoustic Systems 
Combustion instabilities in internal combustion 

engines are considered self-excited oscillations that form 
a feedback loop, as shown in Figure 2.1. Figure 2.1 
schematically illustrates the feedback loop between 
combustion-induced pressure fluctuations and fuel 
concentration oscillations, which is fundamental to 
thermoacoustic instability. The combustion inside the 
internal combustion engine generates acoustic 
oscillations due to the repeated expansion and 
contraction of the gas, which induces fluctuations in the 
fuel concentration within the nozzle. These fuel 
concentration fluctuations propagate downstream with 
the flow and, upon combustion, generate pressure 
fluctuations. 

In this chapter, we examine a mathematical model 
for the feedback loop that encompasses these physical 
phenomena. 

 
 
 
 
 
 
 

Figure 2.1. Combustion Instability Mechanism Assumed in 
This Study 

To model the dynamics of combustion and 
acoustics, we define the fundamental equations based on 
fluid dynamics, as shown in Eq.1 to Eq.4. Eq.1 presents 
the mass conservation low, which governs the inflow and 
outflow of fluid. Here, we assume that mass variation due 
to sources or sinks, such as fluid injection or suction, is 
not considered. Eq.2 is the equation of motion, which 
describes the force balance. It is derived from the 
equilibrium between the pressure acting on a boundary 
surface and the inertial force. Eq.3 is the heat transport 
equation, which expresses the conservation of heat in the 
combustion region. It is assumed that the fluid 
undergoes heat changes only within the combustion 
zone, while all other regions are considered adiabatic. 
Eq.4 is the equation of state, which describes the 
relationship between temperature variations and energy 
changes. 

 Where 𝜌  is Density, 𝑡 is Time, 𝑢 is Flow velocity, 𝑝 
is Pressure fluctuation, 𝜑 is Viscous and external force, 𝑇 
is Temperature, 𝑆 is Entropy, 𝑞 is Heat release density, 𝑐 

is Speed of sound, 𝛾 is Specific heat ratio, 𝐷/𝐷𝑡 denotes 
Lagrange derivative. In this paper, we focus on the 
trajectory of a specific fluid particle in a system with a 
steady flow, as shown in Figure 2.1. Therefore, we 
introduce the concept of the Lagrange derivative, which 
is used when observing particle trajectories in a fixed 
spatial coordinate system. By substituting Eq.3 into Eq.4, 
we obtain Eq.5  

By rearranging the terms related to the flow 
velocity in the Lagrange derivative of Eq.5 and 
substituting Eq.1 and Eq.2, the nonlinear acoustic wave 
equation can be expressed as Eq.6. Eq.6 represents the 
nonlinear acoustic wave equation, integrating flow- 

𝐷𝜌

𝐷𝑡
+ 𝜌∇ ∙ 𝑢 = 0 (1) 

𝜌
𝐷𝑢

𝐷𝑡
= −∇𝑝 + 𝜑 (2) 

𝜌𝑇
𝐷𝑆

𝐷𝑡
= 𝑞 (3) 

d𝑝 − 𝑐2d𝜌 = (𝛾 − 1)𝜌𝑇d𝑆 (4) 

𝐷2𝑝

𝐷𝑡2
−

𝐷

𝐷𝑡
(𝑐2

𝐷𝜌

𝐷𝑡
) = (𝛾 − 1)

𝐷𝑞

𝐷𝑡
 (5) 



 148 

induced and combustion-induced source terms to model 
self-excited oscillations. 

Dowling [7] and Hedge at al. [8] considered the 
phenomenon using a wave equation that accounts only 
for the heat source term generated by combustion, which 
appears as the first term on the right-hand side. 

 In this paper, we extend the formulation by also 
considering the source term due to small velocity 
fluctuations indued by the flow, based on the approach 
of Ikeda [9]. This second term is considered equivalent 
to the source term arising from fluid noise, as defined in 
the field of aeroacoustics by Klein et al. [10]. The terms 
from the fourth and beyond containing (∇ ∙ 𝑢)𝑋′ , 
represent the source terms associated with flow 
divergence. Since this paper does not assume a system 
with external aerodynamic source terms, these terms are 
also excluded from the formulation. Focusing on the 
fluctuating components of various physical quantities, 
we derive the linearized wave equation, which is 
presented as Eq.7. 

Here, to improve the clarity of the solution, we 
express the entropy and temperature in terms of 
pressure and density in Eq.7. The linearized equation of 
motion and the equation of state are then defined as Eq.8 
and Eq.9, respectively. By substituting Eq.8 and Eq.9 into 
Eq.7 and rearranging the terms, we finally obtain Eq.10. 

 
 
 
 
 
 
 
 
 
 

Here, 
Crocco et al. [11]-[12] and Culick et al. [13] have 
proposed Eq.11, which relates the fluctuations of the 
premixed gas inside the fuel nozzle to the combustion 
state of the advected gas. 

 Where 𝑣 is Flow velocity of the premixed gas, 𝑤 is 
Fuel density consumption rate due to chemical reactions, 
𝜏  is Advection time of fuel concentration fluctuations 
from the fuel nozzle tip to the flame position. Based on 
this relationship Eq.12 and Eq.13, by defining 𝜕/𝜕𝑡 = ●̇ , 

𝜕2/𝜕𝑡2 = ●̈ , Eq.10 can be rewritten in the form of Eq.14. 
To numerically solve the derived thermoacoustic wave 
equations and simulate pressure fluctuations, the 
following section introduces a finite element method 
based analytical approach.  

2.1. Finite Element Analysis (FEA) 
This study investigates finite element analysis that 

contributes to real-time prediction through data 
assimilation. When the thermoacoustic phenomenon is 
simplified as a one-dimensional model in the flow 
direction, it can be expressed by Eq.15. 

𝜕2𝑝

𝜕𝑡2
− 𝑐2∇2𝑝 = (𝛾 − 1)

𝐷𝑞

𝐷𝑡
− (𝛾 − 1)𝜌𝑇∇𝑆 

∙
𝐷𝑢

𝐷𝑡
+

𝐷𝑐2

𝐷𝑡

𝐷𝜌

𝐷𝑡
− 2𝑢 ∙ ∇

𝜕𝑝

𝜕𝑡
− 𝑢 ∙ (𝑢 ∙ ∇)∇𝑝
+ 2𝜌𝑐2(∇ ∙ 𝑢)2 + 𝜌𝑐2∇
∙ {(𝑢 ∙ ∇)𝑢 − 𝑢(∇ ∙ 𝑢)} − 𝑐2∇
∙ 𝜑 

(6) 

𝜕2𝑝′

𝜕𝑡2
− 𝑐2∇2𝑝′ = 

(𝛾 − 1)
𝜕𝑞′

𝜕𝑡
− (𝛾 − 1)�̅��̅�∇𝑆̅  ∙

𝜕𝑢′

𝜕𝑡
 

(7) 

𝜌
𝜕𝑢′

𝜕𝑡
= −∇𝑝′ (8) 

d𝑝′ − 𝑐2d𝜌′ = (𝛾 − 1)�̅��̅�d𝑆′ (9) 

𝜕2𝑝′

𝜕𝑡2
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1
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𝜕𝑣′

𝜕𝑡
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1
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 To express the second-order spatial differential 
equation in a first-order form, Eq.15 is converted into a 
weak form. By multiplying by an arbitrary function 𝜑  
with respect to 𝑥 and integrating over the spatial domain, 
and then performing integration by parts on the second 
term, the equation can be written as Eq.16. Eq.16 
reformulates the governing equation into a weak form 
suitable for finite element discretization, allowing for 
numerical implementation. 

 Discretization is performed. The physical 
quantities at each node are defined as shown in Eq.17 

Where 𝑖  represents an arbitrary node, 𝑖  denotes 
the total number of nodes, and 𝑁 is the basis function. 
Substituting Eq.17 into Eq.16, the first term of Eq.16 can 
be expressed as shown in Eq.18. The second term can be 
neglected because both ends of the flow path are 
acoustically open, resulting in 𝑝′ = 0.  

Where   𝑚𝑖𝑗 = ∫ 𝑁𝑖(𝑥)𝑁𝑗(𝑥) 𝑑𝑥 . The second term 

can be neglected because both ends of the flow path are 

acoustically open, resulting in 𝑝′ = 0. The third term can 
be expressed as shown in Eq.19 

Where   K𝑖𝑗 = 𝑐2 ∫ 𝑁′𝑖(𝑥)𝑁′𝑗(𝑥) 𝑑𝑥 . The fourth 

term can be expressed as shown in Eq.20. 

Where   R𝑖𝑗 = 𝑐2 ∫
1

�̅�

𝜕�̅�

𝜕𝑥
𝑁𝑖(𝑥)𝑁′𝑗(𝑥) 𝑑𝑥 . The fifth 

term can be written in the same way as the fourth term, 
as shown in Eq.21.  

Where   S𝑖𝑗 = − ∫
1

�̅�

𝜕�̅�

𝜕𝑥
𝑁𝑖(𝑥)𝑁′𝑗(𝑥) 𝑑𝑥 . The sixth 

term can be written in the same way as Eq.22 and Eq.23. 

∫ 𝜑𝑝′̈ 𝑑𝑥 − 𝑐2 [𝜑
𝜕𝑝′

𝜕𝑥
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𝜕𝜑

𝜕𝑥

𝜕𝑝′

𝜕𝑥
𝑑𝑥 
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𝜕𝑥
𝜑

𝜕𝑝′

𝜕𝑥
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𝜕𝑥
𝜑

𝜕𝑝′

𝜕𝑥
𝑑𝑥 
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�̅��̅�
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𝜕𝑥
−
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𝜕𝑥
} 𝑑
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(16) 

𝜑(𝑥) = ∑ 𝑁𝑖(𝑥)

𝑚

𝑖=1

𝜑𝑖 

𝑝′(𝑥) = ∑ 𝑁𝑖(𝑥) 𝑝′𝑖 

𝑝′̈ (𝑥) = ∑ 𝑁𝑖(𝑥) �̈�′𝑖 

(17) 

∫ φ𝑝′̈ dx = ∫ ∑ 𝑁𝑖(𝑥)𝜑𝑖

𝑚

𝑖=1

∑ 𝑁𝑗(𝑥) 𝑝′̈
𝑗𝑑𝑥
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m11 ⋯ m1𝑚

⋮ ⋱ ⋮
m𝑚1 ⋯ m𝑚𝑚
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�̈�′1

⋮
�̈�′𝑚

]

= 𝛗𝐓𝐌𝐩′̈  
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𝑐2 ∫
𝜕𝜑

𝜕𝑥

𝜕𝑝′

𝜕𝑥
𝑑𝑥

= 𝑐2 ∫ ∑ 𝑁′𝑖(𝑥)

𝑚

𝑖=1

𝜑𝑖 ∑ 𝑁′𝑗(𝑥) 𝑝′𝑗𝑑𝑥
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K11 ⋯ K1𝑚

⋮ ⋱ ⋮
K𝑚1 ⋯ K𝑚𝑚

] [
𝑝′1

⋮
𝑝′𝑚

]

= 𝛗𝐓𝐊𝐩′ 
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𝑐2 ∫
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𝜕𝑥
𝜑

𝜕𝑝′

𝜕𝑥
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𝜕𝑥
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𝑚

𝑖=1
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]
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𝜑

𝜕𝑝′

𝜕𝑥
𝑑𝑥
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1

⋮
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𝑚

]
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∫
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𝜕𝑥
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∑ 𝑁𝑖(𝑥)

𝑚

𝑖=1
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⋮
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Where  O𝑖𝑗 = ∫
�̅�

�̅��̅�
𝑁𝑖(𝑥)𝑁′𝑗(𝑥) 𝑑𝑥 . Thus, by 

substituting Eq.18 to Eq.23 into Eq.16, the following 
expression is obtained. 

Here, since 𝜑 is an arbitrary function, for Eq.24 to 
hold, it must satisfy the condition given by Eq.25. Eq.25 
ensures that the discretized system satisfies the weak 
form for arbitrary test functions, leading to the FEA 
formulation for acoustic pressure evolution. 

Using Eq.25, a time history analysis is performed 
with the acoustic FEA. The time evolution is solved using 
the Newmark- 𝛽 method, as shown Eq.26. Eq.26 applies 
the Newmark- 𝛽  method to solve the time-dependent 
system, balancing stability and accuracy for transient 
thermoacoustic simulations. 

 Where 𝐩′𝒊  represents the unknown sound 
pressure level at time 𝑡 , while 𝐩′𝒊−𝑻  represents the 
known sound pressure at time 𝑡 − 𝜏 . The relationship 
between the step number and time is given by 𝑡 = ∆𝑡(𝑖) 
and 𝜏 = ∆𝑡𝑇. Expressing the current 𝐩′𝒊 in terms of the 
previous step 𝐩′𝒊−𝟏, it can be written as Eq.27 and Eq.28. 

 From the relationship between the two equations 
above and Eq.26, Eq.29 is ultimately derived. Based on 

the FEA formulation, we constructed a computational 
model, which is presented in the next section. 
 
2.2. Computational model 

 The computational model is shown in Figure 2.2. 
Figure 2.2 shows the simplified Rijke-tube inspired 
configuration adopted for numerical simulations, 
focusing on essential features of thermoacoustic 
feedback while maintaining computational efficiency. A 
heat source (Combustion burner) is placed inside a 
cylindrical tube, and the pressure fluctuations occurring 
within the tube are computed. The computational model 
employs the FEA described in Chapter2.1, with a total 
length of 1200mm divided into 50 computational 
elements. 
 

 
Figure 2.2. Computational model 

 
 The computational input was set based on the 
method shown in Table 2.1. Table2.1 lists the FEA input 
parameters, derived from flame imaging data to enable 
real-time capable, experimentally anchored pressure 
fluctuation predictions. The input for the FEA in this 
study was determined from flame image data captured 
using a high-speed camera, as described in Section 3.1. 
Specifically, the spatial distribution of temperature data 
was estimated based on the relationship between 
discretely measured temperature data and combustion 
image data, and various physical properties and state 
variables were calculated from the gas composition and 
temperature information. 
 The first reason for employing this method is that, 
in the condition monitoring of industrial products 

𝛗𝐓𝐌𝐩′̈ + 𝛗𝐓𝐊𝐩′ + 𝛗𝐓𝐑𝐩′ + 𝛗𝐓𝐒𝐩′ 
+(𝛾 − 1)𝑁𝛗𝐓𝐎(𝐩′

𝐭 − 𝐩′
𝐭−𝛕) = 0 

(24) 

𝐌𝐩′̈ + 𝐊𝐩′ + 𝐑𝐩′ + 𝐒𝐩′ 

+(𝛾 − 1)𝑁𝐎(𝐩′
𝐭 − 𝐩′

𝐭−𝛕) = 0 
(25) 

𝐌𝐩′̈
𝒊 + 𝐊𝐩′

𝒊 + 𝐑𝐩′
𝒊 + 𝐒𝐩′

𝒊 

+(𝛾 − 1)𝑁𝐎(𝐩′
𝒊 − 𝐩′

𝒊−𝑻) 
 

(26) 

𝐩′
𝑖 = 𝐩′

(𝒊−𝟏)+𝜟𝒕 = 𝐩′
𝒊−𝟏 + ∆𝑡𝐩′̇

𝒊−𝟏 

+
∆𝑡2

3
𝐩′̈ 𝒊−𝟏 +

∆𝑡2

6
𝐩′̈ 𝒊 

(27) 

𝐩′̇
𝒊 = 𝐩′̇ 𝒊−𝟏 +

∆𝑡

2
(𝐩′̈ 𝒊−𝟏 + 𝐩′̈ 𝒊) (28) 

{𝐌 +
∆𝑡2

6
(𝐊 + 𝐑 + 𝐒 + (𝛾 − 1)𝑁𝐎)} �̈�′𝒊 

= (γ − 1)𝑁𝐎𝐩′
𝒊−𝑻 

−{𝐊 + 𝐑 + 𝐒 + (𝛾 − 1)𝑁𝐎} 

(𝐩′𝒊−𝟏 + ∆𝑡𝐩′̇ 𝒊−𝟏 +
∆𝑡2

3
�̈�′𝒊−𝟏) 

(29) 
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assumed in this study, it is possible to acquire real-time 
combustion flame image data inside an internal 
combustion engine. The second reason is that state 
variable prediction considering chemical reactions, 
combustion processes, and fluid dynamics, such as 
combustion CFD, requires a significant amount of 
computational time, making it unsuitable for real-time 
prediction of pressure fluctuation levels. 
 In this study, the input data for future physical 
properties and state variables required to compute the 
desired pressure fluctuation levels were derived from 
computational input data based on experimentally 
captured image data. As a future research direction, we 
aim to apply data analysis techniques such as machine 
learning and deep learning to predict the necessary 
future input data based on operational parameters 
related to fuel supply and historical combustion flame 
image data. To validate the computational model and 
assess its predictive capability, an experimental study 
was conducted, as described in the following section. 

 
Table 2.1. Conceptual approach to physical quantities and 

state variable data in computation 

 
 

3. Experiment summary 
3.1. Experimental Device and Measuring Equipment 

The experimental device used in this study is 
shown in Figure 3.1. In this experiment, a premixing 
nozzle equipped with a swirler was inserted into a 
rectangular cylinder with a base dimension of 50mm 
square and a length of 1200mm. Liquefied petroleum 
(LP) gas (main component: propane) and air were 
supplied to the nozzle using a mass flow meter. The 
combustion oscillation level was measured using a 
pressure fluctuation level sensor installed upstream of 
the combustion cylinder. This microphone can measure 

sound pressure levels of 30dB (10-3Pa) in the 4-70kHz 
range. As shown in Figure 5.1(Mentioned later), the 
maximum sound pressure level was defined as 
148dB(410Pa) with a normalized sound pressure level 
of 1. Therefore, it is possible to measure a Normalized 
sound pressure level of 10-5 or less. As shown in Figure 
5.1, the average value of the normalized sound pressure 
level under operating conditions with low combustion 
oscillation levels is on the order of 10-2. It can be said that 
this experiment has sufficient measurement accuracy. 

The experimental apparatus used in this study was 
equipped with a visualization window to observe the 
flame inside the combustor. Flame images were captured 
using a high-speed camera through this visualization 
window. Simultaneously, the temperature measured by 
a thermocouple sensor was correlated with the flame 
images to estimate the temperature distribution inside 
the combustor. 

The relative position of the acoustic mode 
generated inside the combustor and the heat release 
concentration of the flame is a crucial factor in evaluating 
combustion instability. In this experiment, to 
intentionally vary the relative position of the flame with 
respect to the acoustic mode inside the combustor, the 
visualization window was designed to be relocatable in 
the flow direction. 

 

 
 

Figure 3.1. Simplified combustion devices and instruments 

 
3.2. Experimental Conditions 

When obtaining the data under various 
combustion conditions, the combustion oscillation level 
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and flame image data were obtained by keeping the LP 
gas flow constant while changing the air flow condition 
step by step as shown in Table 3.1. 
 

Table 3.1. Experimental parameters 

 
 The maximum air flow rate was set to the limit 
conditions for flame lift and blowout, while the gas flow 
rate was set to the maximum allowable value 
considering the heat resistance of the nozzle(uncooled).  
As shown on the left of Figure 3.2, the nozzle was 
positioned at L/2, L/4, and L/8 from the 
bottom(upstream) end of the combustion cylinder, 
relative to the total length of the cylinder(L).  This is 
because the relative position between the flame and the 
antinode or node of the first-order acoustic mode is 
believed to influence the level of combustion instability. 
The air flow rate was set to vary step by step, as shown 
in right of Figure 3.2.  
 

 

Figure 3.2 Burner position and operating condition 
 

 

4. Guidelines for evaluations 
4.1. Damping ratio 

The method for estimating the damping ratio, a 
key parameter in evaluating vibration characteristics, is 
described herein.  As a first step, the Hilbert transform 
was performed in accordance with the definition 
provided in Eq.30 to extract the envelope of the vibration 
waveform. 

 Where  𝑥(𝑡) is a real-valued function.  𝑥(𝑡) is the 
Hilbert transform of a real-valued function." ∗ " denotes 
convolution, and the integral represents the Cauchy 
principal value. Based on the result above, the envelope 
and slope of the vibration waveform can be expressed as 
shown in Eq.31 and Eq.32. 

 Based on Eq.32, the logarithmic decrement and the 
damping ratio at the natural frequency are formulated as 
Eq.33 and Eq.34, respectively. 

Where  𝛿 denotes the logarithmic decrement, 𝑓𝑛 is 
the natural frequency, and 𝜁  represents the damping 
ratio. 
 

5. Results and Discussion 
 An example of the time history waveform of the 
observed pressure fluctuation level, measured using the 
combustion system and instrumentation described in 
Chapter 3, is shown in Figure5.1. An example of the 
predicted time history waveform, calculated using the 
thermoacoustic FEA model described in Chapter 2, is 
shown in Figure 5.2.  

𝑥(𝑡) = 𝑥(𝑡) ∗
1

𝜋𝑡
=

1

𝜋
∫

𝑥(𝜏)

𝑡 − 𝜏
𝑑𝜏

∞

−∞

 (30) 

𝐴(𝑡) = √𝑥(𝑡)2 + 𝑥(𝑡)2 (31) 

𝑎 = 𝑑𝐴(𝑡)dB/𝑑𝑡 (32) 

𝛿 =
𝑎

𝑓𝑛

ln10

20
 (33) 

𝜁 =
𝛿

2𝜋
 (34) 
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Figure 5.1 Pos3_Case5 Time history of the observed signal 

 
Figure 5.2 Pos3_Case5 Time history of the predicted signal 

 
From Figures 5.1 and 5.2, it was confirmed that 

both the observed and predicted results exhibit a trend 
of increasing amplitude levels as the air-to-fuel ratio is 
incrementally increased under the lean combustion 
conditions described in Section 3.2.  

Figure 5.3 presents a comparison of the first and 
second peak frequencies obtained from the FFT analysis 
of all cases for both observed and predicted results. The 
horizontal axis represents the predicted values, while 
the vertical axis represents the observed values. The 
correlation coefficients for the first and second modes 
were found to be 0.77 and 0.67, respectively, indicating 
a reasonable agreement between the two. 

 
Figure5.3 Comparison of frequency characteristics between 

predicted and observed results (First and Second modes) 

 
Subsequently, curve fitting was applied to the 

amplitude envelope of the vibration signal, which was 
calculated using the Hilbert Transform as described in 
Chapter 4, to estimate the logarithmic decrement and 

damping ratio (Figure 5.4). The data interval used for 
curve fitting was set between 5 and 10 seconds, during 
which the vibration amplitude increased, as indicated in 
Figure 5.4. 

 
 
 
 

 
Figure 5.4 Overview of Hilbert Transform and curve 

fitting in Pos3_Case5 
 

For all observed and predicted cases, the damping 
ratio was calculated for the dominant response mode, 
defined as the peak response below 500Hz (first or 
second mode). The results are presented in Figure 5.5. 
The vertical axis represents the observed values, while 
the horizontal axis represents the predicted values. The 
correlation coefficient between the two was found to be 
0.73, indicating a generally consistent trend. These 
results demonstrate that the proposed analytical model 
is capable of reproducing the trend of combustion 
instability.  
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Figure 5.5 Validation of the computational results related to 

logarithmic decrement 

 
From the results shown in Figure 5.5, it was found 

that the flame position exhibiting the strongest tendency 
toward instability—characterized by significantly 
negative damping ratios in both observed and predicted 
cases—was Pos2. This location corresponds to the point 
where the pressure gradient (∇𝑝′(𝑡)) of the first open-
open acoustic mode reaches its maximum. As described 
by Eq.14 in Chapter 2, the external forcing term is 
expressed as the product of the mode-induced pressure 
gradient (∇𝑝′(𝑡))  and the mean heat release rate (�̅�). The 
increase in this forcing term at Pos2 suggests a possible 
mechanism for the enhanced combustion instability 
observed at this position.  
 
5. Conclusion 
 In this study, a low-dimensional thermoacoustic 
model was developed and validated for predicting 
pressure fluctuation behavior in combustion devices 
operating under lean burn conditions. By integrating a 
finite element formulation with experimentally derived 
input data, the model was capable of simulating the time 
evolution of pressure fluctuations and capturing the 
dominant frequency components associated with 
combustion instability. 
 The predicted results demonstrated good 
agreement with experimental observations, as 
evidenced by the correlation coefficients of 0.77 and 0.67 
for the first and second mode peak frequencies, 
respectively. Furthermore, damping ratios estimated via 
Hilbert transform and curve fitting techniques showed a 
correlation coefficient of 0.73 between predicted and 
observed values, indicating that the proposed model 
effectively captures the instability characteristics of the 
system. 

 A detailed analysis revealed that the most unstable 
flame position corresponded Pos2, where the pressure 
gradient of the first acoustic mode was maximized. This 
finding is consistent with theoretical predictions, which 
suggests that the external forcing term—defined as the 
product of the pressure gradient and the mean heat 
release rate—plays a critical role in driving combustion 
instability. 
 These results confirm the validity of the proposed 
modelling approach and its potential applicability to 
real-time monitoring and control of combustion systems. 
Nevertheless, it should be noted that this study assumes 
steady-state flow conditions and neglects external 
aerodynamic noise sources. Although these 
simplifications enable efficient modelling and real-time 
prediction, they may limit the model’s applicability 
under conditions involving significant flow unsteadiness 
or external acoustic disturbances. To address these 
limitations, future research will focus on incorporating 
more complex flow dynamics and external forcing effects, 
as well as enhancing the real-time predictive capabilities 
through the integration of data assimilation techniques 
and machine learning-based estimation of input 
parameters. 
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