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Abstract - The creeping motion and coalescence of droplets 
rising in a vertical tube filled with a quiescent fluid are 
experimentally examined. The viscosity ratio of a droplet to the 
surrounding fluid is unity, keeping the undeformed diameter of 
the leading droplet constant while varying the kinematic 
viscosities of the droplet and surrounding fluid, as well as the 
diameter of the following droplet. The creeping motion of 
droplets can be divided into three types. The coalescence times 
of two droplets are measured. The diameter of the clearance 
area between them is also measured immediately before 
coalescence. The experimentally measured coalescence times 
are compared with the coalescence times of droplets predicted 
using a semi-theoretical formula. The forces acting on the thin 
film between the droplets are discussed. 
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1. Introduction 
The creeping motion and coalescence of droplets 

rising in a quiescent fluid confined in a vertical 
cylindrical tube are potentially useful for different 
purposes including handling of fluids and control of 
chemical reactions. The phenomena are also the basis for 
analyzing the flow of multiphase fluids through porous 
media such as in enhanced oil recovery (e.g., [1]–[4]) and 
the breaking of emulsions in porous coalescers. We focus 
on a narrow passage in porous media, where if we 

assume the passage as a cylindrical tube, then the 
coalescence of droplets in a viscous fluid through the 
passage is the same as that through a cylindrical tube. 
There are many references on the phenomenon of 
droplet coalescence. For example, Ristenpart et al. [5] 
investigated the coalescence dynamics of two spreading 
droplets on a highly wettable substrate. Kumar et al. [6] 
investigated the coalescence dynamics of a droplet freely 
falling on a sessile droplet. Gao et al. [7] studied the 
coalescence of microdroplet swarms in microchannels. A 
broad range of experimental studies on the interaction 
and coalescence of deformable droplets and bubbles 
have been reviewed and compared to a quantitative 
theory [8]. There have been a few cases of investigating 
the coalescence of droplets in a tube, such as by 
Olbricht’s group [9], [10]. Aul and Olbricht proposed a 
semi-theoretical formula for the coalescence time of 
droplets in a creeping flow through a cylindrical tube 
[10]. The coalescence time is defined as the period 
between the instant when the relative velocity of the two 
droplets becomes zero after their apparent contact, and 
when coalescence occurs. Based on Aul and Olbricht’s 
semi-theoretical formula, Muraoka et al. [11] proposed 
other semi-theoretical formulas for the coalescence time 
in terms of the resistance experienced by a liquid droplet 
in a viscous flow through a cylindrical tube in the Stokes 
regime [12]. In this study, the coalescence times of two 
droplets as well as the diameter of the clearance area 
between them immediately before coalescence are 
measured. The experimentally measured coalescence 
times are compared with values predicted using a semi-
theoretical formula. The forces acting on the thin film 
between the droplets are discussed. 
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2. Experiment 

Figure 1 shows a schematic illustration of the 
experimental setup. A glass tube with an inner diameter 
of 3.5 mm, an outer diameter of 8.0 mm, and a length of 
1500 mm was used as the test tube. The test tube was 
filled with a quiescent fluid which was a mixture of 
glycerol and pure water. The test tube was immersed in 
temperature-controlled water in a tank to maintain a 
constant system temperature. Silicone oils with 
kinematic viscosities of 30 cSt and 50 cSt were employed 
as the test fluids for the droplets. The viscosity of the 
droplets was equal to that of the surrounding fluid. Two 
droplets were injected into the test tube using a micro-
syringe installed on a syringe pump placed in front of the 
tube inlet. The behavior of the droplets was monitored 
using three digital cameras placed on a sliding stage. The 
motion of the stage was electrically controlled to 
monitor the movement of the droplets through the test 
tube. The dimensionless undeformed diameter d1/D of 
the leading droplet was fixed at two values, 0.76 and 
0.68, and the dimensionless undeformed diameter d2/D 
of the following droplet was varied, where d1 is the 
undeformed diameter of the leading droplet, d2 is the 
undeformed diameter of the following droplet, and D is 
the inner diameter of the test tube. The velocity of each 
leading and following droplet, the deviation from the 
tube central axis of each droplet and the coalescence 
time were measured. The diameters of the clearance 
area between them were also measured immediately 
before coalescence.  

 
Figure 1. Experimental setup. 

 

3. Semi-theoretical formula for coalescence time 
of droplets rising in quiescent fluid confined 
in vertical tube in Stokes regime 

Based on the semi-theoretical formula of Aul and 
Olbricht [10], other semi-theoretical formulas for the 
coalescence time of droplets in a creeping flow through 
a tube have been proposed [11]. As shown in Figure 2, 
the clearance area between the leading droplet and the 
following droplet is assumed to be flat and discoid.  
Eq. (1) was derived from Reynolds’ theory of lubrication 
[13] under the assumption of two parallel-plane surfaces 
approaching each other. 

  

 
 

Figure 2. Radius of clearance area between droplets, and 
clearance thickness. 

 
                                                                                                     

                                                   (1) 
                                                                                                       
       Here, F is the total force compressing the clearance 

area between the droplets, h is the clearance thickness,  
R is the clearance radius of the clearance area between 
droplets (see Figure 2), and µs denotes the viscosity of 
the surrounding fluid. The total force F is expressed as 
the sum of the hydrodynamic force Fh and the van der 
Waals force between the droplets (Eq. (2)).  

 

                                          (2) 
 

Here, A1 is the Hamaker constant. In this case, the 
hydrodynamic force decelerates the following droplet 
until the relative velocity of the two droplets becomes 
zero after their apparent contact. The hydrodynamic 
force can be expressed as F1 - F2, where F1 is the 
hydrodynamic force exerted on the following droplet 
when the velocity of the following droplet equals that of 
a single droplet without any interaction with the leading 
droplet, and F2 is the hydrodynamic force exerted on the 

h
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following droplet when the relative velocity of the two 
droplets becomes zero after their apparent contact. 
Because the acceleration of the droplet was low, the 
virtual mass [14] was extremely small compared with 
the hydrodynamic force and thus not considered. The 
present experiments confirmed that the leading droplets 
stabilized before and after their apparent contact. Aul 
and Olbricht investigated the coalescence of droplets 
using a glass tube (inner diameter, 54 µm; length, 25 
mm) and proposed a semi-theoretical formula for the 
coalescence time of droplets in a creeping flow through 
a tube. They defined the hydrodynamic force as the force 
exerted on a single rigid sphere after experimentally 
confirming that the velocity of the droplet was similar to 
that of the rigid sphere. In this study, F1 and F2 were 
determined using the numerical procedure developed by 
Higdon and Muldowney [12], who expressed the 
hydrodynamic force exerted on a single droplet in a 
creeping flow through a tube as 

 

               (3) 
                                                                                                   

                                                        (4)                                                                                                                                                                              
 
Here, F0 is the hydrodynamic force exerted on a 

single droplet in a creeping flow through a tube, η is 
defined in Eq. (4), μs is the viscosity of the surrounding 
fluid, d is the undeformed diameter of a single droplet, 
and Kz and Kp are the resistance coefficients [8]. In the 
reference, Kz and Kp are represented as Rz and Rp. Uz is the 
velocity of a single droplet, U0 is the maximum velocity of 
the parabolic pressure-driven flow, and β is the viscosity 
ratio of the droplet to that of the surrounding fluid. In Kz 
and Kp, the center-to-center distances between the 
droplets and tube axis are taken into consideration. The 
form of Eq. (3) is similar to that proposed by Haberman 
and Sayre [15]. Haberman and Sayre replaced the 
resistance acting on a sphere moving with velocity U in a 
creeping flow with the maximum velocity V through a 
cylindrical tube, with the resistance acting on a sphere 
fixed in a flow with a maximum velocity of V - U at the 
tube axis, where the tube wall moves at velocity U in the 
opposite direction to the flow. They expressed the 
resistance acting on the sphere in this case with the 
following equation.   

  
𝐷𝑟𝑎𝑔 = 6𝜋𝜇𝑎( 𝑈𝐾1 − 𝑉𝐾2) = 6𝜋𝜇𝑎𝑈𝐾1 − 6𝜋𝜇𝑎𝑉𝐾2                                                

(5) 
 
Here, K1 and K2 are wall correction coefficients, µ 

denotes the fluid viscosity, and a is the radius of the 
sphere. Therefore, the first term represents the 
resistance acting on a sphere moving at a velocity U in a 
quiescent fluid within a cylindrical tube, while the 
second term represents the resistance acting on a sphere 
fixed in a creeping flow with maximum velocity V inside 
the cylindrical tube. Substituting Eq. (3) for F1 and F2, the 
hydrodynamic force Fh can be expressed as shown in Eq. 
(6).  
 

(6) 
                                                                                                 

Here, Uz1 is the velocity of the following droplet 
without interaction with a leading droplet, Uz2 is the 
velocity of the following droplet when the relative 
velocity of the two droplets becomes zero after their 
apparent contact, and d2 is the undeformed diameter of 
the following droplet. Eq. (6) is an equation for the case 
where both the leading droplet and the following droplet 
move on the tube axis. That is, the density ratio between 
the droplets and the surrounding fluid is unity. With 
regard to the motions of the two droplets during the 
creeping flow through the cylindrical tube, as the 
following droplet became smaller in size, the effect of the 
secondary flow produced by the presence of the leading 
droplet caused it to move to an eccentric position. As the 
following droplet continued to decrease in size, it was 
more easily affected by the secondary flow. If the 
following droplet is located at an eccentric position, then 
Fh can be expressed using Eq. (7). 
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                                                                                     (7) 

 
Here, Kz and Kp in the first braces are the resistance 

coefficients for the following droplet when the droplet 
position is not offset from the tube axis, and Kz and Kp in 
the second braces are the resistance coefficients for the 
following droplet when the droplet position is offset 
from the tube axis. As shown in Figure 3, the 
hydrodynamic force in this case can be denoted by Fhʹ, 
which is equal to Fh cosθ. Here, θ is the angle between the 
tube axis and the line joining the centers of the leading 
and following droplets. 

 

 
 

Figure. 3. Illustration of Fhʹ. 

 
The coalescence time T can be calculated by 

integrating the numerator and denominator on the left-
hand side of Eq. (1) using the method employed by Aul 
and Olbricht. Without considering the details of the 
integration process, the coalescence time T can be 
expressed using Eqs. (8) and (9). For simplicity, C is 
assumed to be constant in Eqs. (8) and (9), and its value 
can be determined experimentally. 

 
 
 
 

(No offset from tube axis)                      (8)  
 
 
 
 

(With offset from tube axis)                  (9) 
 
When two droplets rise in a quiescent fluid 

confined in a vertical cylindrical tube, in Eqs. (3) and (5), 
the second term disappears, leaving only the first term. 
Eq. (3) is replaced by Eq. (10). 

                                                                                                       
 

 

𝐹0 = 𝜂𝜇𝑠(
𝑑

2
)𝐾𝑧𝑈𝑧                                                                                                   

(10) 
 
Substituting Eq. (10) for F1 and F2, the 

hydrodynamic force Fh can be expressed as shown in Eq. 
(11). Eq. (11) takes into account the deviation of the 
leading and following droplets from the tube central axis.  

 

𝐹ℎ = 𝐹1 − 𝐹2 = 𝜂𝜇𝑠(
𝑑2

2
)(𝐾𝑧1𝑈𝑧1 − 𝐾𝑧2𝑈𝑧2) 

                                                                                      (11)                                                                       
 

Here, Kz1 is the resistance coefficient for the 
following droplet when the following droplet is far from 
the leading droplet and there is no interaction between 
the droplets, whereas Kz2 is the resistance coefficient for 
the following droplet when the relative velocity of the 
two droplets becomes zero after their apparent contact. 
Kz1 and Kz2 are coefficients that take into account the 
offset from the tube axis. As shown in Figure 4, the 
hydrodynamic force in this case can be denoted by Fhʹ, 
which is equal to Fh cosθ. Here, θ is the angle between the 
vertical straight line and the line joining the centers of 
the leading and following droplets. The coalescence time 
T can be expressed by Eq. (12) in a similar manner to Eqs. 
(8) and (9).  

 

 
 

Figure 4. Illustration of Fhʹ. 

 
                                                                    
 
 

                                                                                              (12)                                                                                                                                    
 

4. Results and Discussion 
The motion of droplets rising in a quiescent fluid 

confined in a vertical cylindrical tube in the Stokes 
regime could be classified into three types: type 1 where 
both leading and following droplets rise almost straight, 
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type 2 where the leading droplet rises almost straight 
while the following droplet undergoes spiral motion, and 
type 3 where the both leading and following droplets 
undergo spiral motion. In the case where d1/D=0.76 and 
the kinematic viscosity of the droplets is 30 cSt or 50 cSt, 
approximately 60% of the motion of droplets was type 1. 
The motions classified as type 2 and type 3 each 
accounted for approximately 20%. In the case where 
d1/D=0.68 and the kinematic viscosity of the droplets is 
30 cSt, 15% of the motion of droplets was type 1, 10% of 
the motion of droplets was type 2 and 75% was type 3. 
When the size of the leading droplet was small, the 
difficulty of the mobility of the leading droplet due to the 
constraint of the cylindrical wall decreased, and the type 
1 motion decreased and the type 3 motion increased. In 
the case where d1/D=0.68 and the kinematic viscosity of 
the droplets is 50 cSt, 36% of the motion of droplets was 
type 1, 13% of the motion of droplets was type 2 and 
51% was type 3. When the size of the leading droplet was 
small, it is considered that as the viscosity of the droplet 
and the surrounding fluid increased, the mobility of the 
leading and following droplets decreased, resulting in an 
increase in type 1 motion and a decrease in type 3 
motion. Figures 5 and 6 show the dimensionless 
coalescence times and dimensionless clearance diameter 
between the droplets as functions of the dimensionless 
undeformed diameter of the following droplet for 
different values of the kinematic viscosity of the droplets. 
d1/D was fixed at 0.76. T is the coalescence time, and R is 
the radius of the clearance area between the droplets. 
The solid lines represent the experimentally measured 
coalescence times. The dotted lines represent the semi-
theoretical formula for the coalescence time, whereas 
the dash-dotted lines represent the dimensionless 
clearance diameters. The dimensionless coalescence 
time indicates how many tube diameters the two 
droplets travel during the coalescence time. The 
experimentally measured coalescence times for the 
droplets were in close agreement with the values 
predicted using the semi-theoretical formula. The trend 
for the clearance diameter was the same. Meanwhile, the 
effect of the clearance radius was greater than that of the 
hydrodynamic force, since the power of the clearance 
radius was much higher than that of the hydrodynamic 
force (see Eq. (12)).  

 
 
 
 
 

  

 
 
Figure 5. Dimensionless coalescence time and dimensionless 

clearance diameter as a function of the dimensionless 
undeformed diameter of the following droplet for droplets 

with a kinematic viscosity of 30 cSt and 
d1/D = 0.76. 

 

 
 

Figure 6. Dimensionless coalescence time and dimensionless 
clearance diameter as a function of the dimensionless 

undeformed diameter of the following droplet for droplets 
with a kinematic viscosity of 50 cSt and 

d1/D = 0.76. 
 

Figures 7 and 8 show the case where d1/D was 
fixed at 0.68. As in Figures 5 and 6, the experimentally 
measured coalescence times for the droplets were in 
close agreement with the values predicted using the 
semi-theoretical formula. 
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Figure 7. Dimensionless coalescence time and dimensionless 
clearance diameter as a function of the dimensionless 

undeformed diameter of the following droplet for droplets 
with a kinematic viscosity of 30 cSt and  

 d1/D = 0.68. 

 
 

Figure 8. Dimensionless coalescence time and dimensionless 
clearance diameter as a function of the dimensionless 

undeformed diameter of the following droplet for droplets 
with a kinematic viscosity of 50 cSt and  

d1/D = 0.68. 

 
Figures 9 and 10 show the forces acting on the 

clearance area as a function of the clearance thickness 
for different kinematic viscosities of the droplets. 
Specifically, the figures show the cases for d1/D = 0.76 
and d2/D = 0. 48, respectively. The solid lines represent 
the total force acting on the clearance area between the 
droplets, the dotted lines represent the hydrodynamic 
force Fhʹ, and the dash-dotted lines represent the van der 
Waals force between the droplets (see Eqs. (2), (11) and 
Figure 4). For Eq. (2), we assume that the Hamaker 
constant is 10-20 J. The hydrodynamic force Fhʹ is constant 
regardless of the clearance thickness h. However, the van 
der Waals forces between the droplets increase as the 
 

 
 

Figure 9. Forces acting on clearance area as a function of 
clearance thickness for droplets with a kinematic viscosity of 

30 cSt. 
 

 

 
 

Figure 10. Forces acting on clearance area as a function of 
clearance thickness for droplets with a kinematic viscosity of 

50 cSt. 
 

clearance thickness decreases. When the clearance 
thickness was larger than about 30 nm, the 
hydrodynamic force was dominant; when it was smaller 
than 30 nm, the van der Waals force between the 
droplets was larger than the hydrodynamic force. A 
comparison of the abovementioned figures shows that 
the kinematic viscosity of the droplets changed slightly. 

 

5. Conclusion 
The creeping motion and coalescence of droplets 

rising in a vertical tube filled with a quiescent fluid was 
examined in this study. The motion of droplets could be 
classified into three types: type 1 where both leading and 
following droplets rise almost straight, type 2 where the 
leading droplet rises almost straight while the following 
droplet undergoes spiral motion, and type 3 where both 
leading and following droplets undergo spiral motion. In 
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the case where d1/D=0.76 and the kinematic viscosity of 
the droplets is 30 cSt or 50 cSt, approximately 60% of the 
motion of droplets was type 1. In the case where 
d1/D=0.68, when the kinematic viscosity of the droplets 
was 30 cSt, 15% of the motion of droplets was type 1, and 
when the kinematic viscosity of the droplet was 50 cSt, 
36% of the motion of droplets was type 1. In the case of 
type 1 motion, a semi-theoretical formula for the 
coalescence time of droplets was obtained. The 
experimentally measured coalescence times for droplets 
were in close agreement with the values predicted using 
the semi-theoretical formula. When the clearance 
thickness was larger than about 30 nm, the 
hydrodynamic force was dominant; when the clearance 
thickness was smaller than about 30 nm, the van der 
Waals force between the droplets was larger than the 
hydrodynamic force.  

 
Acknowledgements 

The authors wish to express their sincere 
gratitude to the students for their assistance with the 
experiments. 

 

References 
[1] K.S. Lee, J. Cho and J.H. Lee, CO2 Storage Coupled 

With Enhanced Oil Recovery. Springer, 2020.   

[2] P.M. Jarrell, C.E. Fox, M.H. Stein, and S.L. Webb, 

Practical Aspects of CO2 Flooding. Soc. Petroleum 

Eng., 2002. 

[3] J.J. Sheng, Enhanced Oil Recovery Field Case 

Studies. Elsevier, 2013.   

[4] J.J. Sheng, Modern Chemical Enhanced Oil 

Recovery. Elsevier, 2011. 
[5] W.D. Ristenpart, P.M. McCalla, R.V .Roy, and 

H.A .Stone, “Coalescence of Spreading Droplets on a 

Wettable Substrate,” Phys. Rev. Lett. 97, 2006, 

061501.  

[6] M. Kumar, R. Bhardwaj and K.C. Sahu, “Coalescence 

dynamics of a droplet on a sessile droplet,” Phys. 

Fluids, 32, 2020, 012104. 

[7] C. Gao, S. Ling, Z. Chen, Y. Wang and J. Xu, 

“Coalescence law of microdroplet swarms in 

microchannels”, Chem. Eng. Sci., 262, 2022, 118055.    

[8] D.Y.C. Chan, E. Klaseboer and R. Manica, “Film 

drainage and coalescence between deformable drops 

and bubbles,” Soft Matter, 7, 2011, pp.2235-2264.   
[9] W.L. Olbricht and D.M. Kung, “The Interaction and 

Coalescence of Liquid Drops in Flow through a 

Capillary Tuibe,” J. Collid Interface Sci., 120, No.1, 

1987, pp. 229-244. 

[10] R.W. Aul and W.L. Olbricht, “Coalescence of Freely 

Suspended Liquid Droplets in Flow through a Small 

Pore,” J. Colloid Interface Sci., 145, No. 2, 1991, 

pp.478–492. 

[11] M. Muraoka, T. Kamiyama, T. Wada, I. Ueno and H. 

Mizoguchi, “Coalescence Phenomena of Droplets 

with Suspended Particles in a Tube Creeping Flow,” 

in Proceedings of the 8th World Conference on 

Experimental Heat Transfer, Fluid Mechanics and 

Thermodynamics, 2013, Paper No. 96.  

[12] J.J.L. Higdon and G.P. Muldowney, “Resistance 

Function for Spherical Particles, Droplets and 

Bubbles in Cylindrical Tubes,” J. Fluid Mech., 298, 

1995, pp.193–210. 

[13] O. Reynolds, “On the Theory of Lubrication and its 

Application to Mr. Beauchamp Tower’s Experiments 

Including an Experimental Determination of the 

Viscosity of Olive Oil,” Phil. Trans. R. Soc. Lond., 

177, 1886, pp. 157–234. 

[14] B.U. Felderhof, “Virtual mass and drag in two-phase 

flow,” J. Fluid Mech., 225, 1991, pp.177-196. 

[15] W.L. Haberman and R.M. Sayre, “Motion of rigid and 

fluid spheres in stationary and moving liquids inside 

cylindrical tubes,” David Taylor Model Basin Report 

No.1143. U.S. Navy Department, 1958. 

 


