
Avestia Publishing 

Journal of Fluid Flow, Heat and Mass Transfer (JFFHMT) 

Volume 11, Year 2024 

ISSN: 2368-6111 

DOI: 10.11159/jffhmt.2024.035 

 

Date Received: 2024-05-31 

Date Revised: 2024-09-10 

Date Accepted: 2024-09-25  

Date Published: 2024-10-01 

356 

Radiation Transfer Equation in Participating Media: 
Solution Using Physics Informed Neural Networks 

 

Pratibha Biswal1, Jetnis Avdijaj1, Alessandro Parente1,2, Axel Coussement1 

pratibha.biswal@ulb.be 
1Aero-Thermo-Mechanics Department, Université Libre de Bruxelles, Belgium 

Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Université Libre de Bruxelles and 
Vrije Universiteit Brussel, 1050 Brussels, Belgium  

2 WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium 
 
 

Abstract - The radiative transfer equation (RTE) serves as a 
fundamental framework for modeling the propagation of 
electromagnetic waves through a medium.  Traditionally, 
solving the RTE has been challenging and computationally 
intensive. In this work, a physics-informed neural network 
(PINN) model is used to solve the 1D radiative transfer equation. 
The PINN approach integrates physical laws into the neural 
network training process, offering a novel way to address the 
computational complexities of the RTE solution.  The results 
from the PINN model are validated against results from previous 
studies. Findings for different extinction coefficient are 
presented demonstrating the efficacy and accuracy of the PINN 
approach. This work   contributes to the theoretical 
understanding of the RTE and highlights the potential of PINNs 
to enhance and streamline numerical methods in this domain. 
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1. Introduction 

Radiative heat transfer in participating media, 
such as furnace gases, the atmosphere, and clouds, 
involves absorption, emission, and scattering 
phenomena [1]. Thermal radiation interacting with a 
medium leads to energy absorption, reducing 

transmitted energy, while scattering redirects radiation 
in multiple directions, causing out-scattering and in-
scattering. Scattering can be isotropic or anisotropic, 
influenced by factors like temperature, composition, and 
spectral properties. In high-temperature environments 
like furnaces, combustion byproducts such as carbon 
dioxide and water vapor significantly affect radiation 
absorption and scattering, with their properties being 
spectrally dependent and temperature-sensitive. 
Additionally, soot further complicates these radiation 
interactions. 

 
Traditionally, radiative transfer equation (RTE) 

solvers adopt either physics-based (stochastic) or 
deterministic methods. Methods like Monte-Carlo [2] 
excel in parallel computing but face challenges with 
numerically handling optically thick media and 
integrating with other physics, such as fluid mechanics. 
Consequently, researchers often turn to numerical 
methods that account for the spectral properties of gas 
species and particulate matter, as well as their 
interactions within combustion chambers. Methods like 
this such as finite volume [3] and finite element [4] 
methods incur significant computational costs, 
rendering the overall process slow, cumbersome, and 
expensive. In addition, mesh-based methods (e.g 
discrete ordinates) are  very sensitive to the 
computational dimension and suffer from the curse of 
dimensionality, given the high dimensionality of RTE. In 
order to address these challenges, there is a growing 
need for RTE models that require fewer computational 
resources and less time.   
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In recent computational trends, artificial neural 

networks (ANNs) are increasingly favoured over 
elaborate physical models due to their minimal 
computational requirements [5].  One promising 
approach involves substituting exhaustive RTE solutions 
with ANN prediction models in strongly scattering 
media. ANNs, however, often require large amounts of 
data and can struggle with generalization, resulting in 
higher computational costs and less accurate 
predictions. Recent breakthroughs like physics-
informed neural networks (PINNs) show potential for 
problems governed by partial differential equations [6]. 
Unlike pure data-driven ANN, PINNs embed differential 
equations into the training process [7]. These mesh-free 
models select random discrete points in the 
computational region (or take data from 
simulations/experiments), making them less sensitive to 
dimensionality issues especially in RTE problems [8].    

 
In this study, the one-dimensional radiative 

transfer equation (RTE) is solved using a Physics-
Informed Neural Network (PINN) model. The physical 
principles of the RTE are integrated into the neural 
network framework, allowing for efficient handling of 
the complexities of radiative transfer. The solutions 
obtained from the PINN model are validated against 
previous studies, and results are presented in terms of 
radiation intensity and flux for various extinction 
coefficients. This work not only enhances the theoretical 
understanding of the RTE but also suggests a fast and 
efficient method for solving thermal radiative transfer 
problems in scattering media, demonstrating the 
significant potential of PINNs in this domain. 
    
2. Mathematical modelling 
2.1 Radiation transport equation (RTE), 
scattering phase function and boundary 
conditions 
Generalized steady radiation transfer equation (RTE) for 
a system with participating medium can be written as 
follows [9].    
 
𝛺 ∙ 𝛻𝐼𝜆(𝑟, 𝛺) + 𝛽𝜆𝐼𝜆(𝑟, 𝛺) = 

𝜅𝑎,𝜆𝐼𝑏,𝜆[𝑇(𝑟)] +
𝜅𝑠,𝜆

4𝜋
∫ 𝐼𝜆(𝑟

4𝜋

0
, 𝛺′) 𝛷𝜆(𝛺 ∙ 𝛺′)𝑑𝛺′    (1) 

 
Here, 𝐼𝜆(𝑟, 𝛺) is specific intensity of radiation at position 
𝑟 in direction Ω and wavelength 𝜆. 𝛽𝜆 is the extinction 
coefficient at wavelength 𝜆 which accounts for both 

absorption and scattering. 𝜅𝑎,𝜆 and 𝜅𝑠,𝜆 are absorption 

and scattering coefficients, respectively at wavelength 𝜆. 
𝐼𝑏,𝜆[𝑇(𝑟)] is source term, typically representing the 

blackbody radiation intensity at temperature 𝑇(𝑟). 
𝛷𝜆(𝛺 ∙ 𝛺′) is scattering phase function, which describes 
the angular distribution of scattered radiation. In the left 
side of Eq. (1), first term represents rate of change of 
specific radiation intensity due to spatial variation. 
Second term of LHS represents the extinction term due 
to absorption and scattering. In the right-hand side of Eq. 
(1), the first term represents the radiation emission by 
the medium which can be described by a blackbody at 
temperature T(r).   
The most important term for radiation in scattering 
medium is the last term at right hand side. This term 
represents the scattering function that denotes radiation 
scattering from all directions. This term makes the 
equation [Eq. (1)] an integro-differential equation. For 
monochromatic radiation in one-dimensional geometry 
involving non-absorbing medium, the RTE can be 
expressed as follows: 
 

𝜇
𝑑𝐼(𝑥,𝜇)

𝑑𝑥
 + 𝛽𝐼(𝑥, 𝜇) =

𝜅𝑠

2
∫ 𝐼(𝑥

1

−1
, 𝜇′) 𝛷(𝜇 ∙ 𝜇′)𝑑𝜇′ (2) 

 
I(x, 𝜇) is the intensity of radiation at position x and in the 
direction described by the angle cosine 𝜇.  𝜇 ranges from 
-1 (radiation traveling in the opposite direction of the 
reference axis) to +1 (radiation traveling in the same 
direction as the reference axis). 𝛽 is the absorption 
coefficient of the medium and 𝜅𝑠 is the scattering 
coefficient of the medium. Φ(𝜇𝜇′) is the phase function, 
which describes the angular distribution of scattered 
radiation. In one-dimension, the scattering phase 
function can be written as follows.  
  

𝛷(𝜇 ∙ 𝜇′) = 
1

2𝜋
∫ 𝛷(𝛺 ∙ 𝛺′)𝑑𝜑

2𝜋

0
                                 (3)                                               

 
        Here, Φ(Ω∙Ω′) is the full phase function depending on 
the solid angles Ω and Ω′. 𝜑 is the azimuthal angle, 
integrating over 2𝜋 to account for all possible scattering 
directions in the plane perpendicular to the initial 
direction. The scattering phase function can be expanded 
in terms of Legendre Polynomials as follows: 
  
𝛷(𝛺 ∙ 𝛺′) = 𝛷(cos𝛩) = 1+∑ 𝐴𝑚𝑃𝑚(cos𝛩)𝑀

𝑚=1       (4)      
 
For this problem with one dimension, 
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𝛷(𝜇 ∙ 𝜇′) =  1+∑ 𝐴𝑚𝑃𝑚(𝜇)𝑃𝑚(𝜇′)𝑀
𝑚=1                       (5) 

 
Here, 𝑃(𝜇) is Legendre Polynomials  for the function 
defined on the interval [−1,1]  and Am is the expansion 
coefficient. 
 
 
The final form of RTE in terms of Legendre polynomial 
approximation can be written as follows,  
 

𝜇
𝑑𝐼(𝑥, 𝜇)

𝑑𝑥
 + 𝛽𝐼(𝑥, 𝜇) 

=
𝜅𝑠

2
∫ 𝐼(𝑥

1

−1
, 𝜇′) (1 + ∑ 𝐴𝑚𝑃𝑚(cos𝛩)𝑀

𝑚=1 )𝑑𝜇′    (6)                                 

 
In order to solve Eq. (6), the following boundary 
conditions are applied.  
 
Incoming radiation intensity: 𝐼(0, 𝜇)=1 for μ ∈ (0,1] 
Outgoing radiation intensity: 𝐼(1, 𝜇)=0 for μ ∈ [−1,0) 
 

2.2. Angular quadrature  
 
Angular discretization is a key factor that dictates the 
numerical solution accuracy of radiative heat transfer 
problems. The selection of a proper angular quadrature   
is often essential for an efficient solution. In methods like 
PINN, the computation is significantly affected by 
angular space quadrature. The solid angular space is two 
dimensional and described by the zenith angle 𝜃 and 
azimuthal angle 𝜑.  For the one-dimensional case, the 
radiative intensity is only a function of zenith angle 𝜃 due 
to axisymmetry. Five different methods are tested in this 
work.  Gauss–Legendre,  Gauss–Labotto, Gauss-
Chebyshev, Gauss-Hermite and Gauss-Kronrod are 
explored based on corresponding quadrature points and 
weights for integrating over the interval [−1, 1]. These 
works are compared with an analytical solution scheme 
[10] as presented in Figure 1. For a quadrature size of 10, 
Gauss-Legendre method provided better results 
compared to other methods. Gauss-Legendre quadrature 
rule takes the following form 

∫ 𝑓(𝜇)𝑑𝜇
1

−1

≈ ∑ 𝑤𝑖𝑓(𝜇𝑖)                                           (7)

𝑛

𝑖=1

 

 
      Here, n is the number of sample points used in the 
approximation; 𝑤𝑖 are the quadrature weights; 𝜇𝑖  are the 
roots of the ith Legendre polynomial.  
 

2.3. Training points 
       As is customary in supervised learning, we need to 
generate or obtain data to train the network. Generally, 
experimental or simulation data can be used for detailed 
PINN studies. In this work, low-discrepancy sequences 
are considered for training set pertaining to the 
simplicity of the domain.  Interior and boundary 
collocation points are established with the 1D domain 
(0<x<1). These data will be the interior training points. 
These points are needed to be strategically placed to 
capture the behavior of the system accurately. Each point 
represents a specific instance in space and intensity.  
 
(a)                                                                              

 
(b) 

 
Figure 1 Radiation intensity 𝐼 vs 𝜇 at (a) 𝑥 = 0 and (b) 

𝑥 = 1 involving different Gaussian quadrature schemes. 
The solutions are compared with an earlier work by   

Cengel and Ozisik [10]. 
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Different methods are explored to understand the effects 
on the radiation intensity in the 1D domain.  Each 
sampling method offers a different approach to selecting 
points within the 1D domain. We focus on sequence 
sampling method, that involves generating points in a 
deterministic, ordered sequence. These points are 
systematically distributed within the domain, ensuring a 
more uniform coverage. In this work, Sobol, Latin 
Hypercube Sampling (LHS), random and Halton 
sequences are considered for tests and the results are 
shown in Figure 2.  For subsequent calculations, Sobol 
sequence is used.  
 

 
Figure 2. Comparison of various sampling methods used 

in the PINN. 

 
2.4. Physics informed neural networks (PINNs)  
        A deep feedforward neural network is used 
transforming inputs into outputs through multiple layers 
of neurons. Each layer consists of affine-linear maps and 
scalar non-linear activation functions. The network has 
an input layer, an output layer, and multiple hidden 
layers. In order to solve Eq. (2), the equation is 
approximated the DNN, which takes spatial (x) and 
angular (𝜇) variables as inputs. The outputs the 
approximated solution Ip , where p denotes the neural 
network parameters including the weights and biases of 
neural networks. Figure 3 illustrated the architecture of 
the PINN. The NN contains two input layers for x and 𝜇. 
After detailed testing of network hyperparameters, 6 
hidden layers with 24 neurons each are considered. 
Figure 4 shows the effect of hidden layers and neurons 
on different errors.  The tanh activation function is used 
for all neurons in the hidden layers after comparing with 
other available activation functions. The partial 
differential operator ∂/∂x is implemented by using 

automatic differentiation using PyTorch. The neural 
network parameters p are obtained by optimizing the 
loss function. Loss function includes residual of the RTE 
and boundary conditions, that makes the neural network 
dependent on physical governing equations. 
 

 
Figure 3. Schematic representation of the architecture 
of the physics informed neural network (PINN) used to 

solve the RTE. 
(a) 

 
(b) 

 
Figure 4. Effect of number of neurons and hidden 

layers of the PINN on network errors. 
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For interior collocation points, the residual is defined as 
follows:  
 

𝑅𝑖𝑛𝑡 → 𝜇
𝑑𝐼(𝑥,𝜇)

𝑑𝑥
 + 𝛽𝐼(𝑥, 𝜇) −

𝜅𝑠

2
∫ 𝐼(𝑥

1

−1
, 𝜇’) (1 +

∑ 𝐴𝑚𝑃𝑚(cos𝛩)𝑀
𝑚=1 )𝑑𝜇′ − 𝑓                                       (8) 

 
For the boundary conditions, the residuals are 
 
𝑅𝑏𝑐1 → 𝐼(1, 𝜇) − 1  and  
𝑅𝑏𝑐2 → 𝐼(0, 𝜇) − 0                    (9)                                                                         
 
The objective is to minimize these residuals 
simultaneously to determine the weights and biases. The 
network, RTE residual, boundary residuals, and loss 
functions are evaluated followed by an optimization 
algorithm (Adam) to obtain optimal network 
parameters. The network is trained iteratively, adjusting 
the weights and biases to minimize the loss function. 
      
3. Benchmark and validation 
         Results from this work are validated with earlier 
physics based numerical simulation works. Figure 5 
shows the comparison of radiation intensity on spatial-
angular (𝜇 − 𝑥) plane with an earlier work by Pontaza 
and Reddy [11]. They have carried out 1D simulations for 
unit thickness using least square (LS) finite element 
method (FEM). The spatial-angular distributions of the 
radiation intensity for the current work involving a PINN 
and the earlier work involving FEM are in excellent 
agreement.  

 
Figure 5. Comparison of radiation intensity on 𝜇-x plane 
as obtained in an earlier work of finite element method 

results (Pontaza and Reddy [11]; Left panel) and 

present work (Right panel)). Figure from left panel is 
reprinted with permission from Elsevier. 

Further validation has been carried out with the detailed 
work done by Hu et al., [12]. Exit distributions of 
radiative intensity (I−) at x = 0 and (I+) at x = 1 are plotted 
in Figure 6 (a) and (b).  The results based on different 
methods angular discretization are in good agreement 
with slight discrepancy. CSM denotes collocation 
spectral method.  The radiation heat flux is also 
calculated and compared with the earlier work as seen 
from Figure 6(c).  
 

 
Figure 6. Comparison of results of present work with an 

earlier work (Hu et al. [12]). (a) Distribution of 
radiation intensity with 𝜇 at x = 0 and (b) distribution of 

radiation intensity with 𝜇 at x = 1. (c) Radiation heat 
flux vs x. Figures in the left panel are reprinted with 

permission from Elsevier. 
 

4. Results and discussions 
       In the case of isotropic scattering, a linear space-
dependent scattering coefficient, κs=x, and unit 
extinction coefficient, β=1, are considered. The 
corresponding results are presented earlier with the 
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benchmark results for a unit extinction coefficient. In 
thermal radiation, the extinction coefficient represents 
the ability of a medium to absorb and scatter radiation as 
it passes through. It characterizes how much radiation is 
absorbed or scattered per unit distance travelled 
through the material. In combustion, the extinction 
coefficient represents how radiation interacts with 
combustion products like gases, soot, and particles. In 
transparent media like air or water, β tends to be 
relatively low, reflecting minimal interaction of radiation 
with the medium. However, in semi-transparent 
materials such as smoke or steam, β can increase 
substantially due to higher levels of absorption and 
scattering by suspended particles or molecules. 
 
       The extinction coefficient contributes to this 
attenuation by determining the rate at which radiation is 
absorbed along its path.  The effect of the extinction 
coefficient on radiation intensity with μ at x=0 and x=1 is 
plotted but not shown to maintain brevity. At lower 
values of β, radiation intensity is highest as the 
absorption into the medium is minimal. On the other 
hand, at larger β values, radiation intensity is minimum 
as the medium absorbs significant amount of radiation. 
Common to all cases, radiation intensity decreases 
exponentially with distance as it passes through a 
medium due to absorption and scattering processes. A 
clearer representation with the evolution of radiation 
intensity on the x-μ plane is presented in Figure 7(a-c). A 
higher extinction coefficient indicates stronger 
absorption, resulting in a greater reduction in the 
intensity of radiation as it penetrates deeper into the 
medium. This is evident from the lower values of 
radiation intensity for larger β. 
 
A high extinction coefficient means that the material 
strongly absorbs thermal radiation, resulting in lower 
radiation intensity. The material may heat up as it 
absorbs thermal radiation, leading to a higher 
temperature gradient across its thickness or volume. If 
the material cannot efficiently dissipate the absorbed 
heat, it may accumulate thermal energy, leading to 
further heating. On the other hand, a low extinction 
coefficient implies weaker absorption of thermal 
radiation by the material. 
 
Thermal radiation emitted by a hot object can more 
readily pass through the material. With less absorption 
of thermal radiation, the temperature gradient across 
the material may be more uniform. This nature is clearly 

illustrated in terms of radiation flux for various β in 
Figure 8.  In environments where thermal radiation 
plays a significant role, materials with low extinction 
coefficients may contribute to improved thermal 
comfort. However, for applications like furnace 
combustion, control and optimization of the extinction 
coefficient is necessary. 
 
 

 

Figure 7. Effect of extinction coefficient, β on (a-c) 
radiation intensity contour on  x-μ plane [(a) β = 0.6, (b) 

β = 0.8 and (c) β =1]. 

5. Conclusion 
         This study focuses on radiative heat transfer in 
participating media, applicable for various industrial and 
environmental applications. The solution of radiation 
transport equation (RTE) based on utilization of a 
Physics-Informed Neural Network (PINN) model is 
explored. Through benchmarking and validation against 
established numerical methods, PINN demonstrated the 
effectiveness and accuracy for the considered problems. 
Our future work is focused on 2D and 3D geometries 
with higher dimensional systems.  Detailed investigation 
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into angular quadrature rules and sampling methods are 
presented. For an isotropic medium, the significance of 
extinction coefficients on radiation intensity and flux is 
explained. Findings of this work is pivotal. This study 
provides a kick-start approach to tackle high 
dimensionality curse of RTE problems. The fast and 
reliable PINN based solution provides better theoretical 
understanding of radiative heat transfer in scattering 
media.  

 
Figure 8. Effect of extinction coefficient, β on radiation 

heat flux. 
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