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Abstract - This work examines the effects of a transversal and 
uniform magnetic field on an electrically conducting liquid. 
The bottom wall is porous and therefore penetrable, where the 
jump of shear stress is given in terms of a suitable relative 
velocity by a semi-empirical boundary condition. The 
formulation of the flow problem is based on the 
incompressible Magnetohydrodynamics (MHD) governing 
equations in terms of non-dimensional variables. The relevant 
physical parameter measuring the relative importance 
between magnetic and viscous forces is identified as the 
Hartmann number. The solution of the problem shows the 
existence of a flow deceleration strongly dependent upon the 
Hartmann number. In addition, another interesting result is a 
decrease in the magnitude of the longitudinal component of 
the magnetic flux density as Hartmann number increases. The 
application of a transverse magnetic field in the flow of an 
electrically conducting fluid in tiny pores can produce an 
effective effect like the flow deceleration produced as the 
porous medium permeability is decreased. Therefore, it seems 
to be possible to produce such an effect by just monitoring the 
magnetic field instead of changing the complex microstructure 
of a porous medium. Exact and asymptotic solutions are 
obtained for the velocity and pressure fields of the 
unidirectional channel flow. The asymptotic solution 
describes very well   the physical behavior of the flow for 
Hartmann less than unit.  In addition, using the asymptotic 
solutions is possible to split the flow solution in two parts:  a 
purely hydrodynamic contribution and a leading order 
magnetic contribution in terms of the Hartmann number. 
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1. Introduction 

Magnetohydrodynamics (MHD) studies the 
interaction between an electrically conducting fluid 
(non-magnetic) and a magnetic field. Flows with MHD 
effects are a part of fluid mechanics involving these fluids 
(such as salted water, ionized gases, or liquid metal) and 
a magnetic field [1]. The industry has used this flow type 
in several applications, including convection inhibition, 
mixing [2], heating [3], deceleration [4], and fluid 
pumping. The laminar channel flow with a porous wall 
was already studied experimentally by Beavers and 
Joseph [5] and analytically using an extension of the 
Darcy law with a quadratic term in velocity by Cunha [6]. 

The central governing equation in the MHD 
problem is the modified Navier-Stokes (with the Lorentz 
force term) and Maxwell equations [7], [8]. Solving an 
MHD flow requires a coupling between the 
hydrodynamics and Maxwell equations. Using a regular 
asymptotic solution, we can split the hydrodynamic and 
magnetic effects into two different contributions to the 
flow. In this way, the relevant physical parameters of the 
flow are identified, such as Ha, which measures the 
relative importance between magnetic and viscous 
forces, and the magnetic Reynolds, which measures the 
relative importance between the time scale to diffuse 
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magnetic induction (𝑩) and the time scale to convection 
𝑩 by the flow. 

In this context, we theoretically investigated the 
flow problem of an electrically conducting fluid moving 
in a microchannel with a porous wall. This problem is 
interesting in several applications, such as petroleum-
gas industries, cooling systems, aerodynamic heating, 
and fluid droplets [9], [10].  

In this paper, we solve the flow problem of an 
electrically conducting fluid in a microchannel bounded 
by a porous penetrable wall theoretically. For different 
Hartmann numbers, the effect of the magnetic field on 
the result of the pressure gradient versus the flow rate is 
examined. The deviation of the MHD flow from the 
standard solution corresponding to the channel flow in 
the absence of MHD effects will be also discussed. For 
this end, we calculate the velocity and magnetic field 
induction profiles and show how the maximum values of 
these quantities vary with the increase in the Hartmann 
number. In addition, the effective viscosity of the flow is 
also determined as a function of the magnetic parameter. 
The studies here seems to be important to produce drag 
reduction even in laminar channel flows under different 
wall boundary conditions by controlling the intensity of 
the applied magnetic field and the characteristic of the 
porous media (i.e. permeability and porosity) facing the 
permeable wall of the microchannel. Additionally, this 
flow may exist   in oil extraction from natural reservoirs 
in which flow in microchannels, or tiny pores can occurs 
interfacing a porous structure much larger than the 
length scale of the pore.  

 
2. Problem Formulation 

In this section, we describe the formulation of a 
MHD flow in a microchannel with an upper impenetrable 
wall and a lower penetrable porous wall. The boundary 
conditions of the flow are specified. The conditions refer 
to the no-slip condition at the upper wall, the slip 
velocity at the porous interface, and the Beavers-Joseph 
boundary condition (BJBC). For the closure of the 
problem, the BJBC is applied to the lower porous wall. 
The problem investigated here is the flow of an 
electrically conducting Newtonian fluid in a 
microchannel with an upper boundary impenetrable and 
a lower one consisting of a porous boundary. The fluid is 
undergoing a transverse and uniform magnetic field. 

As the lower boundary is porous, we shall apply 
the semi-empirical boundary condition of Beavers and 
Joseph[5]. A schematic of the flow problem explored 

here can be seen in Figure 1. The small distance between 
the walls of the micro-channel is ℎ, and 𝐵0 is the uniform 
and transverse external magnetic field applied to the 
flow, Miranda et al. [11]. 

 

 
Figure 1. Schematic of the micro-channel flow with a porous 

penetrable boundary. The small distance between the 
impenetrable upper wall to the porous lower wall is h. 

 
In this work the induced magnetic field is assumed 

as being: 
 

 
where 𝐵𝑥 is the longitudinal component of the induced 
magnetic field, and 𝐵0  is the transversal component of 
the applied field. 

Make the governing equation non-dimensional is 
an essential step in solving flow problems. We use this 
approach to reduce the level of complexity and the 
number of variables in the model. Typical scales of the 
flow problem explored here are present in Table 1. 

 
Table 1. Typical flow properties and scales used to make 

the flow problem non-dimensional. 

Property Typical scales 
Length ℎ 

Pressure η𝑢𝑚/ℎ 
Velocity 𝑢𝑚 

Electric field 𝑢𝑚𝐵0 
Magnetic Flux Density 𝐵0 

 

Therefore, the non-dimensional quantities are given by: 
 

𝑦∗ =
𝑦

ℎ
,  𝑣𝑥

∗ =
𝑣𝑥

𝑢𝑚
,  𝑝∗ =

𝑝ℎ

η𝑢𝑚
,  

𝐸0
∗ =

𝐸0

𝑢𝑚𝐵0
,  𝐵𝑥

∗ =
𝐵𝑥

𝐵0
, 

(2) 

 

𝑩 = 𝐵𝑥(𝑦)�̂�𝒙 + 𝐵0�̂�𝒚, (1) 
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√ 

where 𝐵𝑜 is the applied magnetic induction and we take 
the one as a reference scale in the present formulation.  
Additionally, the pressure is denoted by 𝑝. The external 
electric field is 𝐸0. The velocity in the x-direction is 𝑣𝑥 , 
and the film velocity in the porous medium is 𝑢𝑚,.  The 
classical Darcy's law describes the low Reynolds number 
flow in a porous medium.  As a typical velocity scale, we 
use this velocity in porous medium facing the lower wall. 
First, however, we are going to use it to make the velocity 
non-dimensional. Relevant physical parameter in this 
flow is the Hartmann number which measures the 
relative importance between magnetic and viscous 

forces: 𝐻𝑎 = 𝐵0ℎ√𝑘𝑒/η , where 𝑘𝑒  and η  are the 

electrical conductivity and viscosity of the fluid, 
respectively [7]. Another non-dimensional parameter is 
the Magnetic Reynolds number (ratio between the 
diffusion time and the advection time of 𝑩) : 𝑅𝑒𝑚

=

ℎ𝑢𝑚/ν𝑚, where ν𝑚 is the magnetic diffusion coefficient 
[7]. Both parameters Hartmann and magnetic Reynolds 
number are based on the distance h between the walls as 
suggested in Miranda et al. and Sinzato and Cunha  [11], 
[12].  

 
2.1. Hydrodynamic Equations 

For the purely hydrodynamic flow, the problem 
has the same configuration as Figure 1 except for the 
applied magnetic field 𝑩. 

 
2.1.1. Governing Equations 

Considering a steady unidirectional flow (free of 
inertia) of an incompressible Newtonian fluid, the 
basic balance equations are [13]: 
 

−∇𝑝 +  𝜂∇ v =  0, (3) 

 
with ∇ ⋅ 𝒗 =  0. 

Eq. 3 is a simplified version of the Navier-Stokes 
equations (NS) for pure viscous flow. We are 
considering steady-state conditions, with constant 
viscosity and no effects of body forces, as the net effect 
of the hydrostatic influence of gravity is included in 
the pressure term, as a modified pressure given by 
𝑝 = 𝑝′ − 𝜌𝒈. 𝒙. 

Under condition of a lubrication regime, 𝑅𝑒 
(ℎ/𝐿) ≪ 1, the components 𝑥, 𝑦  and 𝑧 of the Eq. 3 are 
given respectively by: 
 
 
 

 
 
 
 
 

 

 

 

with the following associated boundary condition in the 
lower and upper wall respectively: 
 

 

Note that, for calculating explicitly  𝑢𝑖ℎ at the lower 

wall we must use the supplementary boundary 

condition: 

 
Here, 𝑢𝑖ℎ is the slip velocity at the porous interface. The 
porosity is defined as being the ratio between the total 
volume of porous and the volume of the porous media. In 
addition, 𝑘  is the permeability of the porous media 
which in more general case depends on the porosity. The 
quantity 𝑢𝑚  is the average velocity in the porous 
medium (i.e. the flow rate over the area). Under the 
previous conditions, the creeping flow in a porous media 
is described by the classical Darcy law [13]: 
 

 
Solving Eqs. 4-10 we found the solution for the flow case 
of a non-conducting fluid [5] : 

−
∂𝑝

∂𝑥
+ η (

𝑑2𝑣𝑥

𝑑𝑦2 ) = 0, 
 

(4) 

∂𝑝

∂𝑦
= 0, (5) 

𝜕𝑝

𝜕𝑧
= 0, (6) 

𝑦 = 0,     
𝑑𝑣𝑥

𝑑𝑦
=

α

√𝑘
(𝑢𝑖ℎ − 𝑢𝑚),   (7) 

𝑦 = ℎ,      𝑣𝑥 = 0. (8) 
  

𝑦 = 0,      𝑣𝑥 = 𝑢𝑖ℎ . (9) 

𝑢𝑚 = −
𝑘

η

∂𝑝

∂𝑥
. (10) 
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𝑣𝑥(𝑦) = 𝑢𝑖ℎ (1 +
α

√𝑘
𝑦) 

               +
1

2η
(𝑦2 + 2α√𝑘𝑦)

∂𝑝

∂𝑥
 . 

(11) 

 
The solution in Eq. 11 gives the velocity 

component as a function of 𝑦 and the pressure gradient. 
The interfacial velocity in the lower boundary is 
continuous and found when using the supplementary 
boundary condition given in Eq. 9. This results, 

 

 

where 𝜎 = ℎ/√𝑘.  
Now, when write Eq. 11 in terms of non-

dimensional quantities we found: 
 

𝑣𝑥
∗(𝑦∗) = 𝑢𝑖ℎ

∗ (1 + 𝛼𝜎𝑦∗) −
1

2
[𝑦∗2𝜎2 + 2𝛼𝜎𝑦∗], (13)  

 
where the interface non-dimensional velocity 𝑢𝑖 is given 
by: 
 

𝑢𝑖ℎ
∗ =

𝑢𝑖ℎ

𝑢𝑚
=  

1

2
(

𝜎2 + 2𝛼𝜎

1 + 𝛼𝜎
). 

(14) 
 
 
 
 

 

Note that 𝑢𝑖ℎ
∗  is a crescent function of 

σ for a given α. However, as σ goes to zero,  𝑢𝑖ℎ  /𝑢𝑚 goes 

to zero as well, independent of α. In addition, for   = √2,  

and  = 1/2,  𝑢𝑖ℎ  = 𝑢𝑚. In addition, for    < √2 , 𝑢𝑖ℎ <

𝑢𝑚  and if  > √2  , 𝑢𝑖ℎ  > 𝑢𝑚 . This simple analysis 

suggests how the shape of the velocity profile may 
change in the presence of a penetrable wall, depending 
on the permeability of the porous media facing the 
microchannel.  
 
2.2 Magnetohydrodynamic Equations 

The current density is evaluated by the classical 
Ohm’s as follows [7]. 
 

 
 
where 𝑘𝑒  is the electric conductivity of the fluid and 𝑬 
denotes eletric field.  

As the velocities components in 𝑦  and 𝑧  directions are 
both null and in the absence of magnetic field in 𝑧 
direction, Eq. 15 reduces to: 
 

𝐽𝑧 = 𝑘𝑒(𝐸𝑧 + (𝑣𝑥𝐵0))�̂�𝒛. (16) 

 
Now, from Faraday’s law for steady-state flow: 
 

∇ × 𝑬 =
∂𝐸𝑧

∂𝑦
�̂�𝑥 −

∂𝐸𝑥

∂𝑦
�̂�𝒛 = 𝟎. (17) 

 
Eq. 17 leads to: 𝐸𝑧 = 𝐸0 for any 𝑦. Consequently: 
 
 

𝐽𝑧 = 𝑘𝑒(𝐸0 + (𝑣𝑥𝐵0))�̂�𝒛. (18) 

 
 
In addition, the current density can also be written in 
terms of the derivative of 𝐵𝑥. Using Ampere’s law [14]. 
We found: 
 

 
 
Now, combining Eq. 18 and Eq. 19, we can write the 
derivative of Bx  with 𝑦  in terms of 𝐸0 , 𝐵0  and 𝑣𝑥  as 
follows: 
 

 
Using Eq. 18 and the magnetic induction given by Eq. 1, 
we found: 
 

 
where 𝒇𝑳 denotes Lorentz Force. 
 
Now, substituting Eq. 21 into the Navier-Stokes equation 
in the presence of the MHD force, (i.e. Lorentz force per 
unit of volume) we obtain: 
 

−∇𝑝 + 𝜂∇2𝒗 + (𝑱 × 𝑩)
= −∇𝑝 + 𝜂∇2𝒗
+ 𝐾𝑒(𝐸0 + 𝑣𝑥𝐵0)(−𝐵0�̂�𝒙

+ 𝐵𝑥�̂�𝒚) = 𝟎. 

(22 
) 

𝑢𝑖ℎ = −
𝑘

2η
(

σ2 + 2ασ

1 + ασ
)

∂𝑝

∂𝑥
 . (12) 

𝑱 = 𝑘𝑒(𝑬 + 𝒗 × 𝑩), (15) 

𝐽𝑧 = ∇ × 𝐻𝑧 =
1

μ0

𝑑𝐵𝑥

𝑑𝑦
�̂�𝒛. (19) 

𝑑𝐵𝑥

𝑑𝑦
= 𝑘𝑒μ0𝐸0 + 𝑘𝑒μ0𝑣𝑥𝐵0. (20) 

𝒇𝑳 = 𝑱 × 𝑩 = 𝑘𝑒(𝐸0 + 𝑣𝑥𝐵0)(−𝐵0�̂�𝒙 + 𝐵𝑥�̂�𝒚), (21) 
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In terms of 𝑥, 𝑦, 𝑧, components Eq. 22 can be expressed 
in the following form: 
 
 

 
 

 
 

 
 
The closure formulation of the MHD flow examined 
requires the equation of magnetic inductions transport 
given by [7]: 
 

 

In Eq. 26, the ν𝑚 =
1

μ0𝑘𝑒
 is defined as the magnetic 

diffusion coefficient. Note that under condition of 
unidirectional flow the transport of the magnetic 
induction field by flow convection is null, that is: 
 

(𝒗 ⋅ ∇)𝑩 = (𝑣𝑥

𝜕

𝜕𝑥
) 𝑩 = 𝟎. 

 
(27) 

 

On the other hand, the stretching of the magnetic 
induction by the flow can be calculated as follows: 
 

 
Therefore, using the expressions given by Eq. 27 and Eq. 
28, the transport of 𝑩 reduces to: 
 

𝐵0

𝑑𝑣𝑥

𝑑𝑦
+ ν𝑚

𝑑2𝐵𝑥

𝑑𝑦2
= 0. (29) 

 

Now, the system of the governing equations of the MHD 
flow with the associated boundary conditions can be 
written in terms of non-dimensional variables as follows: 
 

 
 
 

 

 

 
 

 
 

 
 
The exact solutions of the Eq. 30, Eq. 31, and Eq. 32 

were obtained using the symbolic solve for ordinary 
differential equations - MATLAB software. In this way, the 
velocity field, the magnetic flux density, the pressure 
field, flow rate, and induced electric field are analytically 
determined and the associated exact expressions are 
presented in the Appendix of this work. However, these 
equations are not presented in this work, because they 
are too long and tedious even to be presented as an 
Appendix in the work. We shall make   the huge 
expressions of the exact solutions available to the 
readers as a supplementary material. However, in 
substitution to the exact expressions, we provide an 
asymptotic solution sufficient to explore in detail the 
flow problem examined here. Although simpler, the 
asymptotic solutions give the same physical insights of 
the flow for Ha<1. 

σ 2 +
𝑑2𝑣𝑥

∗

𝑑𝑦∗2 − 𝐻𝑎
2𝐸0

∗ − 𝐻𝑎
2𝑣𝑥

∗ = 0, (30) 

−
𝜕𝑝

𝜕𝑥
+ 𝜂 (

𝑑2𝑣𝑥

𝑑𝑦2 ) − 𝑘𝑒𝐸0𝐵0 − 𝑘𝑒𝑣𝑥𝐵0
2 = 0, (23) 

−
∂𝑝

∂𝑦
+ 𝑘𝑒𝐸0𝐵𝑥 + 𝑘𝑒𝑣𝑥𝐵0𝐵𝑥 = 0, (24) 

∂𝑝

∂𝑧
= 0. (25) 

(𝑣 ⋅ ∇)𝑩 = 𝑩 ⋅ ∇𝑣 +
1

μ0𝑘𝑒
∇2𝑩. (26) 

(𝑩 ⋅ ∇)𝒗 = (𝐵𝑥

𝜕

𝜕𝑥
+ 𝐵0

𝜕

𝜕𝑦
) 𝑣𝑥�̂�𝒙 = 𝐵0

𝑑𝑣𝑥

𝑑𝑦
�̂�𝒙. (28) 

−
∂𝑝∗

∂𝑦∗
+ 𝐻𝑎

2𝐵𝑥
∗(𝐸0

∗ + 𝑣𝑥
∗) = 0, (31) 

𝑑2𝐵𝑥
∗

𝑑𝑦∗2 + 𝑅𝑒𝑚

𝑑𝑣𝑥
∗

𝑑𝑦∗
= 0, (32) 

 

𝑦∗ = 0,
𝑑𝑣𝑥

∗

𝑑𝑦∗
= ασ(𝑢𝑖 − 1), 𝑣𝑥

∗ = 𝑢𝑖
∗, 

 

(33) 

𝑦∗ = 1, 𝑣𝑥
∗(𝑦∗) = 0, (34) 

𝑦∗ = 0,      𝐵𝑥
∗ = 0, (35) 

𝑦∗ = 1,      𝐵𝑥
∗ = 0. (36) 
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2.3. Method of solution 
In this section we shall describe the method of solution 
in order to solve the flow problem of the MHD 
microchannel flow. Say, velocity field, flow rate, pressure 
field, magnetic induction and an effective viscosity of the 
flow.  The expressions presented here will be used in 
section (3) where a regular asymptotic solution is 
developed to find the leading order contribution to the 
flow solution  𝒪(𝐻𝑎2). 
 
2.3.1. Velocity Field and Flow Rate 

The flow velocity can be calculated directly by 
solving the second order differential Eq. 30 with the 
boundary conditions given by Eqs. 33-36. Note that the 
boundary conditions will be used in this solution, 
similarly to the pure hydrodynamic case (i.e. Ha=0). The 
velocity field must be integrated to find the non-
dimensional flow rate in the channel, namely 
 

 
 
2.3.2. Magnetic Flux Density 

The magnetic induction may be determined by 
rearranging two integrations concerning 𝑦∗ in Eq. 32: 

 
 
Now to find the integration constants 𝐶1  and 𝐶2 , two 
magnetic boundary conditions of the problem must be 
used. These conditions are 𝐵𝑥

∗(𝑦∗ = 0) = 𝐵𝑥
∗(𝑦∗ =

1) = 0 . Additionally, substituting the result of the 
velocity field in Eq. 37 and after integrating and making 
some algebraic manipulations, we found the non-
dimensional flow rate. 
 
2.3.3. Pressure Field 

The pressure gradient is constant along the axis, as 
seen throughout this work: 

 
After integrating Eq. 39, it results: 
 

 
Here 𝑓(𝑦∗) as a direct consequence of Eq. 40, we have: 
 

∂𝑝∗

∂𝑦∗
=

𝑑𝑓(𝑦∗)

𝑑𝑦∗
.    (41) 

 
 
Now, substituting the pressure gradient given in Eq. 31 
into Eq. 41, we have: 

 
𝑑𝑓(𝑦∗)

𝑑𝑦∗
= 𝐻𝑎

2𝐵𝑥
∗(𝐸0

∗ + 𝑣𝑥
∗). (42) 

 
The pressure field is found by solving Eq. 42 for 𝑓(𝑦∗) 
and substituting it into Eq. 40. 

 
2.3.4. Electric field 
The electric field can be determined by first integrating 
Eq. 29 that results: 

 
Note that 𝐶3 is just an integration constant. Substituting 
Eq. 20 into Eq. 43, it results 

 

 
Hence, applying the boundary condition 𝑦 = ℎ ⇒ 𝑣𝑥 =
0, we have that 𝐸0 = 𝐶3 . Therefore, Eq. 43 takes the 
form: 

 
Now, writing Eq. 45 in terms of non-dimensional 
quantities and using the wall no-slip boundary condition, 
we can calculate one expression for the non-
dimensional electrical field as follows: 

 

3. A Regular Asymptotic Solution 
As mentioned before, the exact solution for Eq. 30, 

when solved by using the symbolic solve for ordinary 
differential equations - MATLAB software results in a 
complicated expression where the contribution of the 
magnetic field is not straightforward to be separated 

𝑄∗ = ∫ 𝑣𝑥
∗𝑑𝑦∗

1

0

. (37) 

𝐵𝑥
∗(𝑦∗) = −𝑅𝑒𝑚

∫ 𝑣𝑥
∗𝑑𝑦∗ + 𝐶1𝑦∗ + 𝐶2. (38) 

∂𝑝∗

∂𝑥∗
= −σ2. (39) 

𝑝∗(𝑥∗, 𝑦∗) = −σ2𝑥∗ + 𝑓(𝑦∗). (40) 

 

𝐵0𝑣𝑥(𝑦) + ν𝑚

𝑑𝐵𝑥

𝑑𝑦
= 𝐶3. 

(43) 

𝐵0𝑣𝑥(𝑦) + ν𝑚𝑘𝑒μ0𝐸0 + 𝑘𝑒μ0𝑣𝑥(𝑦)𝐵0 = 𝐶3. (44) 

𝐵0𝑣𝑥(𝑦) + ν𝑚

𝑑𝐵𝑥

𝑑𝑦
= 𝐸0. (45) 

𝐸0
∗ = (

1

𝑅𝑒𝑚

𝑑𝐵𝑥
∗

𝑑𝑦∗)
𝑦∗=1

. (46) 
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from the leading order solution 𝒪 (1) (see Appendix). 
Therefore, the exact solutions are not suitable to explore 
the flow phenomenon in the presence of MHD effects 
from a physical point of view.  In contrast, a regular 
asymptotic solution of the flow 𝒪(𝐻𝑎2)  seems to be 
useful for splitting the solution of the problem into two 
main contributions: a purely hydrodynamic term 𝒪(1), 
that is the leading order contribution and a correction 
𝒪(𝐻𝑎2) due to magnetic effects. The asymptotic solution 
although simpler and an approximation of the exact 
solution provide the same physical insights of the 
channel pressure driven flow for 𝐻𝑎 < 1. Consequently, 
the interpretation of the physical mechanisms involved 
in the flow can be better understood and discussed. 

Using a regular perturbations method described in 
[15], [16], the velocity field can be expressed as: 

 
where, in the flow problem examined here, the small 
parameter 𝜀 = 𝐻𝑎2. Then, substituting Eq. 47 into Eq. 
30 and after a few algebraic    manipulations, we find the 
following system of ordinary differential equations at 
different order of ε: 
 

𝑑2𝑣0
∗

𝑑𝑦∗2 = −σ2, 𝒪(ε0), 

 

(48) 

𝑑2𝑣1
∗

𝑑𝑦∗2 − 𝑣0
∗ = 𝐸0

∗, 𝒪(ε1), 
(49) 

𝑑2𝑣2
∗

𝑑𝑦∗2 = 𝑣1
∗, 𝒪(ε2). 

 

(50) 

 
Since the solution of the velocity field is given by a 
regular asymptotic expansion, then the velocity at the 
interface with the porous medium can be also 
represented in terms of a regular expansion in orders of 
ε:  
 

𝑣𝑥
∗(0)  =  𝑢𝑖

∗ = 𝑢𝑖0
∗ + ε𝑢𝑖1

∗ + 𝒪(ε2). (51) 
 
So, the boundary conditions are: 
 

𝑦∗ = 0,
𝑑𝑣0

∗(0)

𝑑𝑦∗
= ασ(𝑢𝑖0 − 1); 

(52) 

𝑑𝑣1
∗(0)

𝑑𝑦∗
= 𝛼𝜎𝑢𝑖1,  

 
𝑦∗ = 0, 𝑣0

∗ = 𝑢𝑖0
∗ , 𝑣1

∗ = 𝑢𝑖1
∗ ,    (53) 

𝑦∗ = 1, 𝑣0
∗ = 𝑣1

∗ = 𝑣2
∗ = 0. 

 
(54) 

 
Now, Eq. 48 just represents the purely 

hydrodynamic contribution since − σ2 is defined as the 
pressure gradient as it has been expressed in Eq. 39.  On 
the other hand, Eq. 49 and Eq. 50 correspond to the MHD 
contribution. Therefore, we can obtain the velocity with 
a truncation error 𝒪(𝐻𝑎2) as following: 
 

𝑣𝑥
∗(𝑦∗) = 𝑣0

∗(𝑦∗) + 𝐻𝑎
2𝑣1

∗(𝑦∗) + 𝒪(𝐻𝑎
4), (55)  

 
where 𝑣0

∗ is the leading order of the solution and given 
by Eq. 13 and 𝑣1

∗ is given by: 
 

 
 
Now, if 𝐻𝑎 < 1, it means that 𝜀 ≪  1  (small parameter), 
so the method gives a highly accurate solution in this 
regime. As 𝐻𝑎  increases, the asymptotic solution 
diverges from the exact solution of the Eq. 30, as we can 
verify in Figure 5. This means that the terms of higher 
order cannot be neglected in this regime since the 
Hartmann number is no longer small, Miranda et al. [11].  

Solving the third boundary condition determines 
the velocity at the porous medium interface. Once solved 
using the perturbation method, the interface velocity 
will also be expressed as an asymptotic expansion in 
terms of the Hartmann number, according to equation X. 
Again, it is possible to detect in the solution the 
hydrodynamic contribution and the MHD contribution, 
which scale with orders of the Hartmann number. If the 
Hartmann number is very small, approaching zero, the 
velocity at the porous medium interface recovers the 
interface velocity obtained in the purely hydrodynamic 
problem.  

𝑣𝑥
∗(𝑦∗) = 𝑣0

∗(𝑦∗) + ε𝑣1
∗(𝑦∗) + 𝒪(ε2), (47) 

𝑣1
∗(𝑦∗) =

𝐸0
∗

2
(𝑦∗2 − 1) 

              +𝑢𝑖ℎ
∗ [

1

2
(𝑦∗2 − 1) +

ασ

6
(𝑦∗3 − 1)] 

              +
ασ

6
(1 − 𝑦∗3) +

σ2

24
(1 − 𝑦∗4). 

(56) 
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𝑢𝑖
∗ = 𝑢𝑖ℎ

∗ + 𝐻𝑎
2

[−
𝐸0

2
− 𝑢𝑖ℎ

∗ (
1

2
+

ασ

6
) +

ασ

6

+
σ2

24
]  +  𝒪(𝐻𝑎

4
). 

(57) 

 
Now, using the asymptotic expansion for the velocity 
field in Eq. 55, we determine the asymptotic solution for 
the magnetic induction field in the 𝑥 direction solving Eq. 
38 as after some algebraic manipulations we have 
 

 
Here the non-dimensional electric field 𝐸0

∗  can be 
determined through the Eq. 46. Therefore 
 

 
Using the Eq. 37, we can determine the flow rate, 
splitting the solution in a purely hydrodynamic 
contribution and a MHD correction 𝑂(𝐻𝑎2), we obtain  

 
 
 

 
Solving Eq. 60 results in 

 
 

Finally, we also propose an asymptotic solution for 
the pressure distribution in the microchannel solving Eq. 
39 for the non-dimensional pressure gradient in 𝑦∗ 
direction. After substituting the solution into Eq. 40, it 
results: 

 
𝑝∗(𝑥∗, 𝑦∗) = −σ2𝑥∗ + 𝑝0

∗ 

+E0
∗𝐻𝑎

2𝑅𝑒𝑚
[
𝑢𝑖

∗ασ

2
(

𝑦∗2

2
−

𝑦∗3

3
) 

+
ασ

2
(

𝑦∗3

3
−

𝑦∗2

2
) +

σ2

6
(

𝑦∗4

4
−

𝑦∗2

2
)] 

+𝐻𝑎
2𝑅𝑒𝑚

[
𝑢𝑖

∗2ασ

2
(

𝑦∗2

2
+

ασ𝑦∗3

3
−

𝑦∗3

3
−

ασ𝑦∗4

4
) 

−
𝑢𝑖

∗ασ

4
(

σ2𝑦∗4

4
+

2ασ𝑦∗3

3
−

σ2𝑦∗5

5
−

2ασ𝑦∗4

4
) 

+
𝑢𝑖

∗ασ

2
(

𝑦∗3

3
+

ασ𝑦∗4

4
−

𝑦∗2

2
−

ασ𝑦∗3

3
) 

−
ασ

4
(

σ2𝑦∗5

5
+

2ασ𝑦∗4

4
−

σ2𝑦∗4

4
−

2ασ𝑦∗3

3
) 

+
𝑢𝑖

∗σ2

6
(

𝑦∗4

4
+

ασ𝑦∗5

5
−

𝑦∗2

2
−

ασ𝑦∗3

3
) 

−
σ2

12
(

σ2𝑦∗6

6
+

2ασ𝑦∗5

5
−

σ2𝑦∗4

4
−

2ασ𝑦∗3

3
)]

+ 𝒪(𝐻𝑎
4). 

(62) 

 
4. Effective Viscosity  
Another important quantity of the flow is the effective 
viscosity, which measures the increase in the fluid 
dissipation produced by MHD effects. The effective 
viscosity here is defined as the one which an electrically 
conducting fluid should have to behave like a non-
conducting Newtonian fluid subject to the same pressure 

𝐵𝑥
∗(𝑦∗) = 𝑅𝑒𝑚

[𝑢𝑖
∗𝛼𝜎

(𝑦∗ − 𝑦∗2)

2

+ 𝛼𝜎
(𝑦∗2 − 𝑦∗)

2

+ 𝜎2
(𝑦∗3 − 𝑦∗)

6
 

                   +𝑅𝑒𝑚
𝐻𝑎

2 {𝐸0
∗

(𝑦∗ − 𝑦∗3)

6

+ 𝑢𝑖
∗ [

(𝑦∗ − 𝑦∗3)

6

+ 𝛼𝜎
(𝑦∗ − 𝑦∗4)

24
]

+ 𝛼𝜎
(𝑦∗4 − 𝑦∗)

24

+ 𝜎2
(𝑦∗5 − 𝑦∗)

120
} . 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(58) 

𝐸0
∗ = (

𝐻𝑎
2

2
+ 1)

−1

{
σ2

3
+ ασ

(1 − 𝑢𝑖
∗)

2

+ 𝐻𝑎
2 [

ασ

8
+

σ2

30

− 𝑢𝑖
∗ (

1

3
+

ασ

8
)]} + 𝒪(𝐻𝑎

4) 

         (59) 

𝑄∗ = ∫ 𝑣0
∗𝑑𝑦∗

1

0

+ 𝐻𝑎
2 ∫ 𝑣1

∗𝑑𝑦∗
1

0

+ 𝒪(𝐻𝑎
4). (60) 

𝑄∗ =
σ2

12

(4 + ασ)

(1 + ασ)
+

ασ

2(1 + ασ)
 

                   +𝐻𝑎
2 [

−𝐸0
∗

3
− σ2

(32 + 7ασ)

240(1 + ασ)

−
50ασ

240(1 + ασ)
] + 𝒪(𝐻𝑎

4). 

 
 
 
 
 
 

(61) 
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gradient. Therefore, the effective viscosity will naturally 
depend on Ha. In the context of the blood flow, this 
quantity is called intrinsic or equivalent viscosity of the 
flow that is frequently used in practical applications of 
hemorheology [17], [18].  Due to the deceleration in the 
flow produced by MHD as a transversal magnetic field is 
applied, we can associate this extra dissipation   with an 
increase in the fluid viscosity.  

An expression for the effective viscosity can be 
obtained when comparing the flow rate under MHD 
effect given in Eq. 61 with the Poiseuille law of the 
channel flow given for a non-conducting Newtonian fluid 
(Ha=0) given by: 
 

 
Therefore, comparing Eq. 61 and Eq. 63, we find the 
following expression for η𝑒/𝜂: 
 

𝜂𝑒

𝜂
= [

6 + 𝐻𝑎
2

3(2 + 𝐻𝑎
2)

− 𝐻𝑎
2

(32 + 7𝛼𝜎 + 50𝛼/𝜎)

(𝛼𝜎 + 4 + 6𝛼/𝜎)
]

−1

+ 𝑂(𝐻𝑎
4). (64) 

 

5. Results and Discussion  
In this section we present some results for the 

velocity and magnetic induction profiles in the 
microchannel unidirectional flow examined here. In 
addition, the effective viscosity, non-dimensional 
maximum velocity, the interface velocity facing the 
porous media and the flow rate as a function of the 
Hartmann number are also presented and discussed 
here. As the Hartmann number increases, the effects of 
the magnetic forces dominate the viscous forces, and the 
flow decelerates. This indicates that the MHD effect 
introduces an extra dissipation in the flow, which 
corroborates with the observed increase in the effective 
viscosity as 𝐻𝑎 increases as shown in the plot of Figure 
2.  Note that the non-dimensional effective viscosity can 
be calculated by our   asymptotic solution given in Eq. 64. 
The effect of the effective viscosity in the present context 
represents the dissipation in an equivalent Newtonian 
fluid undergoing the same pressure gradient, but with a 
viscosity higher than the viscosity of the electrically 
conducting fluid in the absence of magnetic (i.e. Ha=0).  
Of course, as Ha goes to zero the non-dimensional 
effective viscosity tends to 1 as can be seen in Figure 2.  

 
Figure 2. Non-dimensional effective viscosity as a function of 
Hartmann number (Ha). Asymptotic solution for α = 0.5, σ = 

√2, η𝑒 = 1. 
 

 
Figure 3. Typical non-dimensional flow velocity profiles for  
𝐻𝑎  and the condition in the facing porous media being: α =

 0.5 and  σ = √2. The curves in the plots are associated with 
different values of Hartmann and Ha=0 is given by the red 
curve. The legend is inserted in the plot. 

 
Figure 3 shows a typical velocity profiles of the 

non-dimensional x-component of the velocity as a 
function of the no-dimensional coordinate y*. We can 
clearly see that the velocity profile becomes flatter as 𝐻𝑎 
increases in the flow, moving away from the standard 
parabolic profile as Ha=0.  We still emphasize that when 
the Hartmann number approaches zero, the MHD flow 
goes to the limit of the solution of a non-conducting 
Newtonian fluid experiencing the same pressure 
gradient.  The convergence of the profiles in the limit of 

𝑄 =
𝐺ℎ3

12η𝑒
[
ασ + 4 + 6α/σ

(1 + ασ)
] . (63) 
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𝐻𝑎 →  0 is clearly seen as comparing the velocity profile 
for 𝐻𝑎 = 0  with the one for 𝐻𝑎 = 0.1. Additionally, it is 
interesting to observe that the tendency of a velocity 
profile to be more uniform rather than parabolic as a 
consequence of the flow dissipation by MHD effects is 
similar to the behavior of the velocity profiles in the pepe 
flows of shear thinning fluids with shear rate dependent 
viscosity.  
 

 

Figure 4. Non-dimensional interfacial velocity as a function of 
the Hartmann number. Dashed line represents the asymptotic 

solution in Eq. 57. 𝛼 = 0.5  and σ = √2 . The points ◯ were 
obtained by the exact solution. 

 
Figure 5. The non-dimensional maximum velocity of the 
channel flow as a function of 𝐻𝑎 ranging from 0 to 0.8 for α =

 0.5, σ = √2. In this plot we compare the exact (solid line) and 
asymptotic solution (dashed line). An excellent agreement is 
observed until Ha around 0.3. 
 

Figures 4, 5 present the behavior of the non-
dimensional velocity at the porous medium interface 
(lower channel wall) and the maximum velocity, 
respectively, as Ha increases. As previously observed in 
Figure 3, the magnetic effects counteract the 
hydrodynamic effects, generating a "braking" effect on 
the flow. Therefore, it is natural that the interface 
velocity decreases with the increase of the Hartmann 
number, which means the growth of the flow dissipation 
by magnetic effects. It is seen that for a zero Hartmann 
number, the non-dimensional velocity at the interface 
corresponds to the condition of the purely 
hydrodynamic case, which equals 1 for the conditions of 

σ = √2  and =1/2. Under this condition, the interface 
velocity is the same as the mean velocity of the porous 
medium. The points in the plot represent the numerical 
values given by the exact solution expressions. As we can 
see the asymptotic solution for this quantity is in a 
perfect agreement with the exact solution for Hartmann 
numbers less than one. By analyzing the relative error 
between the exact and asymptotic solutions, it is found 
that for Ha=0.1, the error is 2.5 × 10−3%, and for Ha=0.3, 
it is 2.0 × 10−1%. In other words, the difference between 
the two solutions is truly minimal, and in this Hartmann 
regime, the solution obtained by the perturbation 
method is a perfect alternative.  

 

 
Figure 6. Non-dimensional component 𝑥  of the magnetic 
induction 𝐵𝑥  as a function of 𝑦 (i.e. 𝐵𝑥  profile). In this plot the 
curves represent 𝐵𝑥  for a different Hartmann number (exact 
solution). The inset in the plot shows the variation of the 
maximum value of 𝐵𝑥   as 𝐻𝑎 increase. 𝑅𝑒𝑚  =  1, 𝛼 =  0.5, σ = 

√2. The solid line in the inset represents the exact solution, and 
the dashed line denotes the asymptotic solution. 
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Additionally, Figure 6 shows the coupling between 
the induced magnetic flux density and the flow velocity. 
As Hartmann increases, the effects of the Lorentz force 
slow down the flow, making the maximum values of the 
induced magnetic flux absolute values smaller as can be 
seen by the inset of the Figure 6. 
 

 

 
Figure 7. Non-dimensional flow rate as a function of the 
Hartmann number. In this plot we compare the exact (solid 

line) and asymptotic solution (dashed line). 𝛼 =  0.5, σ = √2. 
An excellent agreement is observed for Ha less than 0.3. 
 

Figure 7 presents a plot of the flow rate as a 
function of the Hartmann number. If the Lorentz force is 
strong, the flow rate in the channel substantially 
decreases as a direct consequence of an increase of the 
flow dissipation rate by the magnetic field.  The flow rate 
clearly decays with the increase of Hartmann, as pointed 
out by Figure 7. As a complementary result Figures 8 and 
9 show that the channel flow can be accelerate at the 
interface wall with the porous media by increasing the 
permeability parameter σ.  Figure 8 clearly shows 
perceptible variations in the velocity profile shape when the 
permeability of the porous media or the channel gap are 

changed. Actually, an increase in the parameter σ means 
to decrease the permeability of the porous media. In this 
case, the mean velocity in the porous media is decreased 
and the ratio,  𝑢𝑖ℎ/ 𝑢𝑚 increases with  σ linearly for both 
Ha as depicted in Figure 9. For Ha=0.3 the interfacial 
velocity in the lower wall is just slightly lower than the 
same for Ha=0 and the ratio 𝑢𝑖ℎ/ 𝑢𝑚  is pretty close to 

unit for σ = √2. Additionally,   it  is interesting to note 
that the average velocity of a liquid  in  porous media 
flows could be controlled by monitoring both the 

electrical and, or the  magnetic field without  changing 
the porous media characteristic that would be certainly 
unusual and difficult  from a practical point of view. 
 

 

 
Figure 8. Profiles of non-dimensional flow velocity for 
different values of the permeability parameter  σ  for α =  0.5.  
The curves in the plot were calculated using the expression of 
the exact solution.  It is clear the variations in the velocity 
profile shape when the permeability of the porous media or 
the channel gap are changed. 

 

 
Figure 9. Non-dimensional velocity at the porous medium 
interface as a function of  𝜎 for   𝛼 = 0.5 . The symbols in the 
plot denote different values of the Hartmann number: (a) ★ 
𝐻𝑎 = 0.3 and (b) ◯ 𝐻𝑎 = 0. 

 

The sketch of the full velocity profile, including 

the porous media facing the channel lower wall is 

shown in Figure 10. As already seen in Figure 9, For 
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the purely hydrodynamic flow corresponding to Ha = 

0, when σ < √2  means higher permeability of the 

porous medium. This condition results in the porous 

media mean velocity being greater than the interfacial 

velocity. Otherwise,  𝜎 > √2  corresponds to smaller 

values of permeability, and the mean velocity in the 

porous medium is smaller than the interfacial velocity. 

This range of the mean velocity in a porous media by 

changing the permeabilities can be also defined by 

controlling the intensity of electric and magnetic fields 

as using an electrically conducting fluid. Several 

applications require very low percolation velocities in 

a porous media such as in soil mechanics in agricultural 

applications.  The dependence of the   non-dimensional 

interfacial velocity on the  σ parameter is plotted in 

Figure 10.  We can see that in the   presence of MHD 

effect on the flow, the value at which the interfacial 

velocity is equal of the porous media velocity   is 

slightly different of √2 (i.e. 𝜎 ≈1.5). The attenuation 

effect on the flow caused by the transverse magnetic 

field could be also interpreted as an equivalent increase 

in the permeability of the porous medium, as if it were 

possible to change the permeability of the porous 

medium (which is a more structural aspect) by merely 

increasing the intensity of the external magnetic field. 

This effect seems to be a relevant MHD application in 

the context of porous media explored here.  
Essentially, the boundary condition used for the 

channel lower wall interfacing a porous medium makes 
the flow to resemble the one which occurs in the tiny 
pores of natural reservoirs during oil extraction by a 
pressure-driven flow. This interesting finding in this 
work may provide insight into developing numerical 
simulations to explore nonlinear regimes of the flow for 
different intensities of the magnetic field, the presence of 
inertia, and different conditions of the porous media 
facing the lower wall as porosity and permeability. We 
plan in future work to explore the effect of drag 
reduction by magnetic pumping and the equivalent effect 
of decreasing permeability of a porous medium using 
magnetic deceleration. 

 

 

 

Figure 10. Sketch of the full velocity profile for three typical 
values of , illustrating the associated changes in the shape of 
the velocity profile and the variations of the interfacial velocity 
with the porous media permeability.  

 
6. Conclusion  

In this work, the results have shown how 
magnetohydrodynamic force can modify the velocity 
field, the pressure field, the induced magnetic field and 
dissipation in a microchannel flow with a penetrable 
wall facing a porous media undergoing different 
conditions of permeability and intensity of a transversal 
magnetic field. Indeed, the MHD effect produces a 
deceleration in the flow, increasing the rate of 
dissipation in the fluid. This increase in dissipation may 
be characterized by an effective viscosity, which depends 
on the Hartmann number. In addition, we can produce an 
effect of magnetic pumping flow by controlling both the 
electrical and the magnetic fields on the conducting fluid. 

The asymptotic solutions of the flow problem 
examined here were important to split the solution in 
two parts: a purely hydrodynamic contribution and a 
leading order contribution in terms of Ha2. In particular, 
the asymptotic solutions, although simpler, have 
provided the same physical insights for Ha<1 and are 
much easier to be manipulated. Additionally, the slip 
condition in the porous wall modifies the flow dynamics 
since the velocity is not zero in the lower penetrable wall 
as occurs in the upper wall. This effect can be also 
changed by controlling the porosity and the permeability 
of the porous media facing the channel in the lower wall. 
We found that the shape of the velocity profile in the 
microchannel can be strongly influenced by the 
permeability of the porous interfacing the lower wall. 
For the permeability parameter 𝜎 which corresponds to 
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the reciprocal of the non-dimensional permeability root 

square equal to √2  and porosity fixed and to ½ the 
interface velocity in the channel wall is exactly the same 
the average velocity in the porous media. On the other 

hand, if the same parameter is less than √2  the 
interfacial velocity is always less than the porous media 
velocity.  Otherwise, the interfacial velocity is greater 
than the porous media mean velocity. Therefore, the 
application of a transverse magnetic field in the flow of 
an electrically conducting fluid in tiny pores can produce 
an effective effect like the flow deceleration which occurs 
as the porous media permeability is decreased. It seems 
to be possible to produce such an effect by just 
monitoring the magnetic field instead of changing the 
complex microstructure of the porous medium. On the 
other hand, for flow applications where the magnetic 
pumping effect is necessary, control of the intensity of 
the electric field is always required.  
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Appendix 
This section presents the equations for the exact solutions developed in this work by using the symbolic 

solve for ordinary differential equations - MATLAB software. 
 

Velocity Field 
 

 
 
Slip Velocity 
 

 
 
Flow Rate 
 

 
 
Magnetic Flux Density 
 

 
 
Electric Field 
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Pressure Field 
 

 
 

 


