
Avestia Publishing 

Journal of Fluid Flow, Heat and Mass Transfer (JFFHMT) 

Volume 11, Year 2024 

ISSN: 2368-6111 

DOI: 10.11159/jffhmt.2024.021 

 

Date Received: 2024-06-06 

Date Revised: 2024-06-21 

Date Accepted: 2024-07-24 

Date Published: 2024-08-08 

210 

Dynamic Characterization of Parametric Structures 
and Perturbation Analysis of Blood Flow in the 

Cranial Arteries 
 

D. Otoo1, K. Mensah1, K. A. Adu-Poku2, D. Gyamfi1, B. A. Danquaah1, H. Adusei3 

1 University of Energy and Natural Resources, Department of Mathematics and Statistics 
Box 214, Sunyani, 00233 

2 University of Energy and Natural Resources, Department of Mechanical and Manufacturing Engineering 
Box 214, Sunyani, 00233 

                                 3 Valley View University, Department of Science and Mathematics Education 
dominic.otoo@uenr.edu.gh; kmensah33@st.knust.edu.gh; kofi.adu-poku@uenr.edu.gh; daniel.gyamfi@uenr.edu.gh; 

baaba.ghansah@uenr.edu.gh, hawa.adusei@yahoo.com 
 
 

Abstract- Stroke is considered the second leading cause of 
death globally. The primary risk factor for stroke-related 
diseases is high blood pressure, which occurs as a result of 
insufficient blood transport to the brain due to blockages or 
ruptures in the blood vessels. This study presents the explicit 
finite-difference method through discretization of the solution 
domain of the 1-D Navier-Stokes equations capable of predicting 
pressure and flow profiles by characterizing key parameters of 
pressure variations inherent in the human cranial arteries. 
Interestingly, the results obtained shows that, the part of the 
wave with higher pressure travels faster to the periphery than 
the part with lower pressure. The increase in diastolic and a null 
decrease in systolic pressure as seen in our simulations is as a 
result of a slower heart rate, since the heart is taking longer time 
to complete a beat. Our findings shows that a decrease in the 
radius of the cranial artery from (0.29 − 0.275)𝑐𝑚 will result in 
the increase in pressure within the range (115𝑚𝑚𝐻𝑔 −
145𝑚𝑚𝐻𝑔). 
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Nomenclature 
 𝐿  length  

    𝑆   Surface 

    𝐴(𝑥, 𝑡)   Area 

    𝑅(𝑥, 𝑡)  Radius 

    (𝑟, 𝑥)    Radial and axial coordinate  

    𝑢(𝑥, 𝑡)  Average velocity 

    𝑢𝑥        Velocity in axial direction 

    𝑄(𝑥, 𝑡) Volumetric f low rate 

     𝜌  Blood density (1.06 g/m3) 

     P  Blood pressure 

     𝜐   Kinematic viscosity (0.046 𝑠−1. 𝑐𝑚2) 

    𝑃0(𝑥)  Initial pressure 

     𝑟0   Unstressed radius 

    𝐴0  Reference area   

    𝑓(𝑟0)  Elastic response 

    Z, 𝑅 Resistances 

   𝐶𝑇  Compliance 

    𝔭   Parent artery 

    (𝑑1, 𝑑2) Daughter vessels  

    𝑟𝑐   Characteristics radius (1 cm) 

    𝑞𝑐   Characteristics flow (10 cm3/s) 

    𝑅𝑒  Reynolds number 

    𝑇     Period of one cycle 

    𝑟𝑢    Upstream radius  

    𝑟𝑑    Downstream radius 

 

1. Introduction 
To date, the study of carotid artery disease 

remains crucial in the field of medicine and its allied 
globally. This disease predominantly occurs as a 
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consequence of numerous risk factors. For example, low-
density lipoprotein cholesterol, physical inactivity, 
genetic predisposition, obesity, diabetes mellitus etc, [1]. 
In severe circumstances, a plaque could rupture or break 
off, hence, sending parts of the obstruction to the brain 
arteries contributing to high blood pressure. When high 
blood pressure occurs, blood circulation halts beyond 
the edge of collapse, resulting in stroke. Therefore, 
monitoring high blood pressure whilst understanding its 
underlining factors is imperative to identifying tangible 
and feasible remedies for local, national, and global 
policies.  

As revealed in the Lancet by the NCD Risk Factor 
Collaboration (NCD-RISC), the number of people with 
hypertension is over 1.28 billion globally in 2019 [2]. In 
Africa, this situation is no different as statistics have 
revealed a surge in the number of high blood pressure 
cases. About 82% out of the over 1.28 billion 
hypertension populace resides in Sub-Saharan Africa, 
low- and middle-income countries. Studies on high blood 
pressure cases can be dated back to the beginning of the 
17th century. Although, a clearer understanding of the 
underlying principle regarding the dynamics of blood 
flow has not been fully realized, several authors have 
comprehensively researched into this field of study. 
Many of these studies primarily centred on the entire 
arterial systems whilst others focused on the circle of 
Willis. 
 

2. Related Work 
The model of [3] could delineate discontinuities 

and disruptions in blood flow, nevertheless could not 
provide prediction exactness of the pressure and flow 
patterns behavior. Siddiqui et al. [4] proposed Artificial 
Neural Network (ANN), Mamdani Fuzzy Inference 
System (MFIS) and Deep Machine Learning (DML) 
techniques to analyze cardiovascular diseases. Even 
though the DML model proposed is more accurate with a 
precision of 92.45% relative to the rest of the 
frameworks, however, the models could not capture the 
biological mechanisms of blood flow in the carotid 
artery. Flint et al. [5] performed a multivariable Cox 
survival analysis to determine the effect of the burden of 
systolic and diastolic hypertension on a composite 
outcome of myocardial infarction, ischemic stroke, or 
hemorrhagic stroke. Their findings however revealed 
systolic and diastolic hypertension independently 
predicted adverse outcomes, despite a greater effect of 
systolic hypertension. Mc Auley [6] employed the 
Ordinary Differential Equation (ODE) to model 

cardiovascular diseases. Despite their wide-spread 
applications, ODEs present several drawbacks. For 
example, it falls short when it is necessary to represent 
biological systems with more than one independent 
variable. Boolean models have also been utilized in the 
study of blood pressure and cardiovascular diseases [7]. 
Though their qualitative nature allows for representing 
gene networks, they are incapable of considering the 
biological mechanisms or enzyme kinetics. Dhange et al. 
[8] investigated blood flowing through an inclination 
pipe with stricture and expansion of a constant 
incompressible Casson model using a mild stenosis 
approximation technique.  

  

3.0. Model description 
It is alarming that cardiovascular diseases are 

plaguing the global population, and a clearer 
understanding of the pressure variations and flow is 
vital. This study employs the explicit finite difference 
method to investigate the key parameters of pressure 
variations in the human cranial arteries.  In this section, 
we present the model description of the 1-D blood flow 
equations, taking into accounts the geometry, governing 
equations, boundary conditions and the numerical 
scheme used to solve the flow problem. The coefficients 
of viscosity of a fluid are shown to be Newtonian if they 
remain constant throughout all shear rates. Hence, since 
the artery diameters are huge compared to the 
individual cell diameters, it is fair to assume blood does 
have a constant viscosity in larger vessels. And, does the 
non-Newtonian behaviour become minimal, and blood 
can be regarded as a Newtonian fluid [9]. 

Consider blood as an incompressible fluid, flowing 
through an axisymmetric pressure cylinder with length 
𝐿, surface 𝑆, area 𝐴(𝑥, 𝑡), radius 𝑅(𝑥, 𝑡), and (𝑟, 𝑥) being  

Figure 1: The cranial arterial vessel. 

the radial and axial coordinate respectively. The 
geometric view of the problem is seen in Figure 1. This 
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geometry can be described using the 1-D Navier-Stokes 
equations in cylindrical coordinates as; 

𝜕𝑢𝑥

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑥

𝜕𝑟
+ 𝑢𝑥

𝜕𝑢𝑥

𝜕𝑥
=

−1

𝜌

𝜕𝑝

𝜕𝑥
+ 

𝜇

𝜌
(

𝜕2𝑢𝑥

𝜕𝑟2 +
𝜕2𝑢𝑥

𝜕𝑥2 +
1

𝑟

𝜕𝑢𝑥

𝜕𝑟
) 

                                                                                            (1𝑎) 

                        
1

𝑟

𝜕(𝑟𝑢𝑟)

𝜕𝑟
+

𝜕𝑢𝑥

𝜕𝑥
= 0                     (1𝑏)          

According to [10], the no-slip condition and 
deformation of the elastic wall of the vessel allow for the 
boundary condition; 

[𝑢𝑟]𝑟=𝑅 =
𝜕𝑅

𝜕𝑡
 and [𝑢𝑥]𝑟=𝑅 = 0 (2) 

 It is appropriate to define the area of cross-
section, 

𝐴(𝑥, 𝑡) = ∫𝑑𝐴
𝑆

 (3𝑎) 

and average velocity 𝑢(𝑥, 𝑡), where 𝑢𝑥 denote the 
velocity with constant in the axial direction as 

𝑢(𝑥, 𝑡) =
1

𝐴(𝑥, 𝑡)
∫𝑢𝑥

𝑆

𝑑𝐴 (3𝑏) 

The relationship between volumetric f low rate 𝑄(𝑥, 𝑡), 
and velocity, can then be express as 

𝑄(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)𝐴(𝑥, 𝑡) (3𝑐) 

Following [10], and integrating over the cross-sectional 
area of Eq. (1𝑎, 1𝑏) using the boundary condition Eq. 2 
and the definitions (3𝑎, 3𝑏, 3𝑐) gives;  

𝜕𝑄

𝜕𝑡
+

𝜕

𝜕𝑥
(

𝑄2

𝐴
) +

𝐴

𝜌

𝜕𝑃

𝜕𝑥
+ 8𝑣𝜋 (

𝑄

𝐴
) = 0 (4𝑎) 

𝜕𝑄

𝜕𝑥
+

𝜕𝐴

𝜕𝑡
= 0 (4𝑏) 

where, (𝑥, 𝑡) denote the axial and spatial coordinate 
along the artery, 𝜌 the blood density, P represent the 
blood pressure, 𝜐 the kinematic viscosity and the flow of 
this study follows Poiseuille's law [11].  

We obtain an underdetermine system, hence a 
third expression is needed to close the system. While 
some authors assume equilibrium at the start of the 
simulation and prefer  𝑃0(𝑥) as initial pressure, other 

models use other pressures, such as atmospheric 
pressure, to determine whether or not the artery is in the 
vertical position or treat it as a separate term 𝑃(𝑥, 𝑡). 
[12], [13] assumed a thin wall tube based on linear 
elasticity where each section is independent of the 
others. Sochi [14] assume a linear pressure-area 
constitutive relation, where the pressure is proportional 
to arterial amplitude difference. Hence the third relation 
would provide a full mechanical model for the structure 
of the vessel wall. The deformation of the cranial artery 
after constriction is assume to be of the type  𝐴0 >
𝐴(𝑥, 𝑡) and thus the tube law becomes  

                                                 

𝑃(𝑥, 𝑡) − 𝑃0 =  
4𝐸ℎ

3𝑟0
[

𝑟0

𝑟
− 1] (4𝑐) 

  
The system of mass momentum and continuity Eq. 

(4𝑎, 4𝑏, 4𝑐), can be written in conservation form as; 

                            
𝜕𝑈

𝜕𝑡
+

𝜕𝐻

𝜕𝑥
= 𝐸                        (5)   

where

𝑈 = [
𝐴
𝑄

] ,   𝐻 = [
𝑄

𝑄2

𝐴
+ 𝐵

] = [
𝑄

𝑄2

𝐴
+

𝑓

𝜌
√𝐴 ⋅ 𝐴0

]

 and 𝐸 = [
0

−8𝜋
𝑄

𝐴
𝑣 +

1

𝜌
[2√𝐴 (

𝑑𝑓

𝑑𝑟0
√𝐴0 + 𝑓√𝜋) − 𝐴

𝑑𝑓

𝑑𝑟0
]

𝑑𝑟0

𝑑𝑥
]]

 

Here, we denote 𝑟0 the unstressed radius, 𝐴0 = 𝜋𝑟0
2 the 

reference area, and 𝑓(𝑟0) =
4𝐸ℎ

3𝑟0
 an expression for elastic 

response. Based on the compliance estimates of [15], 

[16],  
𝐸ℎ0

𝑟0
= 𝑘0𝑒𝑘1𝑟0 + 𝑘2, where these constant 

estimates were given as 𝑘0 = 2 ×
107 𝑔. 𝑠−2. 𝑐𝑚−1,   𝑘1 = −22.53 𝑐𝑚−1 and  𝑘2 = 8.65 ×
105 𝑔. 𝑠−2. 𝑐𝑚−1. 

 
3.1 Boundary conditions 

The above model suggests fluid pressure for a 
solitary cranial artery and thus boundary conditions are 
needed to truncate the computational domain. The 
inflow boundary condition at the inlet of the parent 
artery is specified by experimental data from [10].  The 
three element windkessel model has significant 
improvement over a purely resistive model [17] and 
hence was adopted as the outflow boundary condition. 

                    
𝜕𝑝

𝜕𝑡
+

𝑝

𝑅𝐶𝑇
=

𝑞(𝑡)

𝐶𝑇
(1 +

𝑍

𝑅
) + 𝑍

𝜕𝑞

𝜕𝑡
                         (6)  

 where Z, 𝑅 represent the resistances and 𝐶𝑇 
compliance. The bifurcation indicates an outflow of the 
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parent artery and the inflow of the daughter arteries, 
figure 2. Suppose from figure 2, that the bifurcation takes 
place at  Ω, then the conservation of mass yields q𝔭(𝑡) =

q𝑑1
(𝑡) + q𝑑2

(𝑡) and 𝑝𝔭(𝑡) = 𝑝𝑑1
(𝑡) = 𝑝𝑑2

(𝑡), where 𝔭 

refers to the parent artery, left and right-daughter 
vessels as (𝑑1, 𝑑2).  

 
             

      
 
Figure 2. Carotid artery bifurcation diagram 

3.2. Dimensional analysis 
To analytically reduce the complexity of the 

fundamental equations describing the behaviour of the 
system, scaling analysis is performed to reduce the 
number of experimental parameters affecting the flow 
problem. With regards to our fluid flow equations 
presented by Eq. 5, we require to identify the set of 
parameters which characterize the behaviour of our 
system. Consider the following characteristics 
parameters: 𝑟𝑐 = 1 cm, the characteristics radius,  𝜌 =
1.06 g/m3, the density of the blood, 𝑞𝑐 = 10 cm3/s, the 
characteristics flow. Now, if we scale the length to 𝑟𝑐 and 
the flow to 𝑞𝑐, then it is obvious the area can be scale to 
𝑟𝑐

2. Thus we obtain the following scaling quantities; 𝑥∗ =
𝑥

𝑟𝑐
,    𝑞∗ =

𝑄

𝑞𝑐
,   𝐴∗ =

𝐴

𝑟𝑐
2 , 𝑡∗ =

𝑡𝑞𝑐

𝑟𝑐
3 , 𝑟0

∗ =
𝑟0

𝑟𝑐
,   𝑝∗ =

𝑝

𝑃𝑠
,   

where 𝑃𝑠 =
𝜌(𝑞𝑐)2

𝑟𝑐
4 . 

Now multiplying through Eq. 5 by 
𝑟𝑐

𝑞𝑐
  for the 

continuity equation, it satisfies 

∂𝐴∗

∂𝑡∗
+

∂𝑞∗

∂𝑥∗
= 0 (7𝑎) 

Similarly, multiplying through Eq. 5 by 
𝑟𝑐

3

𝑞𝑐
2, the 

momentum equation is written as,  

∂𝑞∗

∂𝑡∗
+

∂

∂𝑥∗ (
𝑞∗2

𝐴∗ ) + 𝐴∗
∂𝑝∗

∂𝑥∗
=

−8𝜋𝑞∗

𝐴∗𝑅𝑒
 (7𝑏) 

where 𝑅𝑒 =
𝑞𝑐

𝑣𝑟𝑐
 is the Reynolds number. 

If we suppress Eq. 7a and 7b, the scaled equations 
become 

∂𝐴

∂𝑡
+

∂𝑞

∂𝑥
= 0

∂𝑞

∂𝑡
+

∂

∂𝑥
(

𝑞2

𝐴
) + 𝐴

∂𝑝

∂𝑥
=

−8𝜋𝑞

𝐴𝑅𝑒

 

and the dimensionless Navier-Stokes equations 
can be written as 

∂

∂𝑡
(

𝐴
𝑞

) +
∂

∂𝑥
(

𝑞

𝑞2

𝐴
+ 𝑓(𝑟0)√𝐴 ⋅ 𝐴0

) =

(

0
−8𝜋

𝑅𝑒

𝑞

𝐴
+ [2√𝐴 (

𝑑𝑓

𝑑𝑟0
√𝐴0 + 𝑓(𝑟0)√𝜋) − 𝐴

𝑑𝑓

𝑑𝑟0
]

𝑑𝑟0

𝑑𝑥
)    (8)

 

 
 

4.0. Numerical discretization 
The numerical solution figure 3, follows an explicit 

finite difference scheme which is second order accurate 
in time and space [18]. We may write 

 𝑈 = (
𝐴
𝑞

) , 𝐻 = (
𝑞

𝑞2

𝐴
+ 𝑓(𝑟0)√𝐴 ⋅ 𝐴0

) , 𝐸 =

(
0

−8𝜋

𝑅𝑒

𝑞

𝐴
+ [2√𝐴 (

𝑑𝑓

𝑑𝑟0
√𝐴0 + 𝑓(𝑟0)√𝜋) − 𝐴

𝑑𝑓

𝑑𝑟0
]

𝑑𝑟0

𝑑𝑥

).  We 

now consider 𝑈𝑚
𝑛 = 𝑈(𝑚𝛥𝑥, 𝑛𝛥𝑡), the solution at 𝑛𝛥𝑡 

time frame and position 𝑚𝛥𝑥, where similar definitions 
can be made for 𝐻 and 𝐸. Then, the flow 𝑞 and area cross-
section 𝐴 at (𝑛 + 1) is given as 

𝑈𝑚
𝑛+1 = 𝑈𝑚

𝑛 −
𝛥𝑡

𝛥𝑥
(𝐻𝑚+1 2⁄

𝑛+1 2⁄
− 𝐻𝑚−1 2⁄

𝑛+1 2⁄
) + 

𝛥𝑡

2
(𝐸𝑚+1 2⁄

𝑛+1 2⁄
+ 𝐸𝑚−1 2⁄

𝑛+1 2⁄
)                                                (9) 

The 𝑛 +
1

2
 time steps and 𝑚 ±

1

2
 position values of 

𝐻 and 𝐸 for 𝑛 +
1

2
 time interval can be found using 

𝑈𝑗
𝑛+1 2⁄

=
𝑈𝑗+1 2⁄

𝑛 +𝑈𝑗−1 2⁄
𝑛

2
+

𝛥𝑡

2
(−

𝐻𝑗+1 2⁄
𝑛 −𝐻𝑗−1 2⁄

𝑛

𝛥𝑥
+
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𝐸𝑗+1 2⁄
𝑛 +𝐸𝑗−1 2⁄

𝑛

2
)                                                                               (10)

where 𝑗 = 𝑚 ±
1

2
.  

 

     
Figure 3. An illustration of the explicit finite difference scheme. 

4.1. Inflow boundary conditions 
This condition is applied at the entrance of the 

parent vessel of figure 2. The inflow 𝑞 into the carotid 
artery necessitates the specification of flux values 𝑞(0, 𝑡). 
Using Newton's method, the value of 𝐴0

𝑛+1 is determine 

by substituting 𝑞0
𝑛+1 2⁄

 into Eq. 9. The numerical scheme 
requires the estimated of; 

𝑞−1 2⁄
𝑛+1 2⁄

= 2𝑞0
𝑛+1 2⁄

− 𝑞1 2⁄
𝑛+1 2⁄

 (11) 

4.2. Outflow boundary conditions 

The outflow boundary condition, is applied at each 
of the outlet of figure 2 and is determine by the 
discretized three-element windkessel model as; 

𝑝𝑚
𝑛+1 − 𝑝𝑚

𝑛

𝛥𝑡
= Z

𝑞𝑚
𝑛+1 − 𝑞𝑚

𝑛

𝛥𝑡
−

𝑝𝑚
𝑛

𝑅𝐶𝑇
+

𝑞𝑚
𝑛 ( Z + R)

𝑅𝐶𝑇
 (12) 

where Z, R represent the resistances and 𝐶𝑇 compliance. 
Since the windkessel model is a function of  𝑞 only, it 
requires the evaluation of pressure in the carotid artery, 
which is related to area 𝐴(x, t) via the discretized tube 
law Eq. 4c. Then using an iterative scheme with an initial 
guess for 𝑝𝑚

𝑛+1, the solutions for 𝐴𝑚
𝑛+1 and 𝑝𝑚

𝑛+1 is found, 
where as 𝑞𝑚

𝑛+1 is calculated using Eq. 12. The algorithm 

stops at |𝑝𝑜𝑙𝑑 − 𝑝𝑚
𝑛+1| < 1𝑒 − 5. 

 
4.3. Bifurcation boundary conditions 

The estimation of  𝑛 +
1

2
 time steps and 𝑚 ±

1

2
 

position values of 𝐻 𝑎𝑛𝑑 𝐸, allow for the introduction of 

imaginary points at the outlet of the parent artery and 
the inflow into the daughter arteries. Using these points, 

(𝑈(𝑖))
𝑚

𝑛+
1

2 can be expressed as 

(𝑈(𝑖))
𝑚

𝑛+
1

2 =
1

2
((𝑈(𝑖))

𝑚−
1

2

𝑛+
1

2 + (𝑈(𝑖))
𝑚+

1

2

𝑛+
1

2 ) (13) 

 where 𝑖 = 𝑝, 𝑑1, 𝑑2, represents the parent, left, 
and right-daughter vessels respectively and  𝑚 = ℳ  if 
𝑖 = 𝑝, otherwise 𝑚 = 0, given 𝑈 = (𝐴, 𝑞). Thus following 
[19], we assume conservation of flow and continuity of 
pressure as; 

((𝑈∗)(𝑝))
𝑚

𝑟
= ((𝑈∗)(𝑑1))

𝑚

𝑟
+ ((𝑈∗)(𝑑2))

𝑚

𝑟
 (14) 

 where  𝑈∗ = (𝑞, 𝑝) for 𝑟 = (𝑛 +
1

2
, 𝑛 + 1). Taking 

the norm of Eq. 4c, the pressure continuity for 𝑟 =

(𝑛 +
1

2
, 𝑛 + 1) , 𝑖 = (𝑑1, 𝑑2) is found as 

(𝑓𝑝)𝑚 (1 − √
(𝐴0

𝑝
)

𝑚

(𝐴𝑝)𝑚
𝑟 ) = (𝑓𝑑𝑖)

𝑚
(1 − √

(𝐴0

𝑑𝑖)
𝑚

(𝐴𝑑𝑖)
𝑚

𝑟 )              (15)  

Now the solution at 𝑡 = 𝑛 + 1 time step for the 
parent and branching arteries in terms of flow rate and 
area cross-section is given as 

(𝑞(𝑖))
𝑚

𝑡
= (𝑞(𝑖))

𝑚

𝑛
−

𝛥𝑡

𝛥𝑥
[(𝐻2

(𝑖)
)

𝑚+
1

2

𝑛+
1

2
− (𝐻2

(𝑖)
)

𝑚−
1

2

𝑛+
1

2
] + 

𝛥𝑡

2
[(𝐸2

(𝑖)
)

𝑚+
1

2

𝑛+
1

2
+ (𝐸2

(𝑖)
)

𝑚−
1

2

𝑛+
1

2
]                                              (16) 

and 

(𝐴(𝑖))
𝑚

𝑡
= (𝐴(𝑖))

𝑚

𝑛
−

𝛥𝑡

𝛥𝑥
[(𝐻1

(𝑖)
)

𝑚+
1

2

𝑛+
1

2
− (𝐻1

(𝑖)
)

𝑚−
1

2

𝑛+
1

2
]     (17) 

From Eq. 13-17, we have a system of 18 nonlinear 
equations which can be solved using Newton’s iterative 
method   

𝑥𝑔+1 = 𝑥𝑔 − (𝐽(𝑥𝑔))
−1

𝑓𝐽(𝑥𝑔) for 𝑔 = 0,1,2, …, 

where 𝑔 is the current iteration, 𝑥 =
(𝑥1, 𝑥2, … , 𝑥18), 𝐽(𝑥𝑔) is the Jacobian of the system of 
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equations and 𝑓𝑔(𝑥) are the residual equations. A 

Courant Friedrich's Lewy (CFL) stability threshold [20] 
dt

dx
≤ |𝑢 + 𝑐|−1, where 𝑢 is velocity (𝑞 𝐴⁄ ) and 𝑐 wave 

speed is used to fulfilled the stability of the numerical 
scheme.  The accuracy of the results depends on the Lax-
Wendroff method, which is analysed in terms of its order 
of convergence and stability. This method is second-
order accurate in both time and space. Hence the global 
error ℰ =  𝑂 (Δ𝑡2 + Δ𝑥2). Next, the Courant-Friedrichs-
Lewy (CFL) condition is met, and the method becomes 
stable. 

Possible errors may arise from approximating the 
derivatives in the partial differential equations with 
finite differences. Since the method is second-order 
accurate, the truncation error is of the order stated 
above. Also, numerical dissipation can still occur due to 
round-off errors or if the time step is not chosen 
appropriately given the Lax-Wendroff method. 

 
5. Simulation using the parameter values. 

The simulations in this study were based on the set 
of parameters, of which the lengths and diameters were 
taken by magnetic resonance techniques and has been 
verified by the literatures; (Kolachalama et al. [15], 
Alastruey et al. [21], Olufsen et al. [16]). To avoid 
pressure buildup after each cycle, the values of the 
windkessel parameters of the outflow boundary 
condition are empirically estimated, whiles the density ρ 
= 1.06, period of one cycle, 𝑇 =  0.917𝑠 and viscosity 𝜐 =
 0.046 𝑠−1. 𝑐𝑚2 were adopted. As a result, four cardiac 
cycles were used for accuracy and precision of which the 
results are produced by our numerical approach.   

 
Table 1. Physiological data obtained from Kolachalama et al. 
[15], Olufsen et al. [10], [16] representing length (L), upstream 
radius, 𝑟𝑢 and downstream radius 𝑟𝑑 . 
 

 L (cm) 𝑟𝑑  𝑟𝑢  

𝑝 20.8 0.37 0.37 

𝑑1 17.7 0.28 0.29 

𝑑2 17.7 0.28 0.29 

 
Figure 4a depicts the pressure in the carotid 

artery as a function of space 𝑥 and time 𝑡, where all of the 
properties described by [10], [15], [16] can be found in 
the pressure profile. This signifies a good quantitative 
response between our results and the literature data. 
Thus, the systolic and diastolic pressures are similar to 

that of a normal subject. We have demonstrated the 
corresponding flow rate profile in Figure 4b, how the 
behaviour of wave propagation and reflection in the 
carotid artery separate from the incoming pulse wave 
and becomes more noticeable near the periphery.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 4a. The pressure (mmHg) as a function of space 𝑥 and 
time 𝑡 over the fourth cardiac cycle along the carotid 
bifurcation for 𝑟𝑢 =  0.29 and 𝑟𝑑 =  0.28. 

Figure 4b: The flow rate as a function of space x and time t 
over fourth cardiac cycle along the carotid bifurcation. 
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Modelling the dynamics of pressure and flow rate 
requires an understanding of the pulsatile nature of 
blood flow in the carotid artery. The elastic nature of the 
artery, the cardiac cycle, and other physiological 
variables all affect this dynamic process. Therefore, 
perturbation of these variables is required to examine 
changes in pressure and flow rate. As a result, we 
evaluate the model’s response to changes in these 
variables and the results can be seen in Figure 5 (a, b), 
Figure 6 (a, b), and Figure 7.  

 
Figure 5a. The pressure (mmHg) as a function of space x and 
time t, over the fourth cardiac cycles along the carotid 
bifurcation for 𝑟𝑢 = 0.29 and 𝑟𝑑 = 0.275. 

 

 
 
Figure 5b. The flow rate as a function of space x  
and time t, over the fourth cardiac cycles along the carotid 
bifurcation for 𝑟𝑢 = 0.29 and 𝑟𝑑 = 0.275. 
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Figure 6a. Pressure rate as a function of space x   and time t, 
over the fourth cardiac cycles at T=1s along the carotid 
bifurcation for 𝑟𝑢 = 0.29 and 𝑟𝑑 = 0.275. 
Figure 6b. The flow rate as a function of space x and time t, over 
the fourth cardiac cycles at T=1s along the carotid bifurcation 
for 𝑟𝑢 = 0.29 and 𝑟𝑑 = 0.275. 

 
 

Figure 7. Pressure as a   function of space x and time t over six 
cardiac cycles at  T = 0.917s along the carotid bifurcation for 
𝑟𝑢 = 0.29 and 𝑟𝑑 =  0.275. 

 
Figure 8. The relation between pressure and radius using an 
estimated value of our tube law equation. 

 
The results in Figures 5b, 6b, shows how the 

reflected waves separate from the incoming waves and 
become more noticeable near the periphery than at the 
proximal point. It can be seen from Figure 5a that, 
narrowing of the downstream radius has resulted in a 
high blood pressure situation since it has a systolic 
pressure of 140 mmHg or higher and diastolic pressure 
of 90 mmHg or higher [5]. Also, the reflected wave is 
layered on the incoming wave, increasing systolic 
pressure, which is the peak pressure during the cardiac 
cycle. Taking 𝑇 = 1𝑠, where (𝑟𝑢, 𝑟𝑑)  remains the same as 
that for Figures 5a, 5b, it can be seen from Figure 6a the 
0.083s increase in 𝑇, has resulted in an increase in 
diastolic and a quite decrease in systolic pressure as a 
result of a slower heart rate. Figure 7 shows an increase 
in cardiac output to six, which results in an increase in 
diastolic and systolic pressures as there are more beats 
per minute, hence a higher heart rate. It is observed in 
the simulations that, the part of the wave with higher 
pressure travels faster to the periphery than the part 
with lower pressure. From Figure 8, we have illustrated, 
how a decrease in radius due to constriction results in a 
pressure increase, using the tube law equation from our 
model. 
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6. Conclusion  
In this study, we examined a 1-D numerical 

simulation of the Navier-Stokes equations to investigate 
the dynamics of blood flow and pressure variations. A 
dimensional analysis was carried out, to reduce the 
complexity of the fundamental equations. Various 
boundary conditions were employed to ensure the 
model accurately represents the physical constraints 
and can better simulate the actual behaviour of the 
system, leading to more precise and reliable 
results.  Implementing appropriate boundary conditions 
helps to stabilize the numerical solution and ensures 
convergence of the model, particularly in complex 3D 
analyses. The resulting 1-D model was solved to 
determine flow and pressure at all points along the 
carotid artery using the explicit finite-difference method. 
Results were verified through the comparison with the 
available experimental data in the literature. 

The results showed a rise in systolic and diastolic 
pulse pressure as we perturbed the parameters in our 
simulation, as seen in Figures 5a, 6a, and 7, and the peak 
flow diminished as we descended the peripheral 
cerebral bed. Also, a decrease in the radius of the cranial 
artery from (0.29 − 0.275)𝑐𝑚 will result in the increase 
in pressure within the range (115𝑚𝑚𝐻𝑔 − 145𝑚𝑚𝐻𝑔) . 
In addition, the part of the wave with higher pressure 
travels faster to the periphery than the part with lower 
pressure. 
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