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Abstract - The influence of non-Darcian buoyancy on 

convection caused by buoyancy in a porous square chamber 
with sine wave boundary conditions on the two sidewalls is 
examined numerically. A sinusoidal temperature distribution 
is applied to the cavity's vertical sidewalls. The COMSOL 
Multiphysics software is utilized to solve the dimensionless 
governing equations for the porous cavity, which is formulated 
mathematically using the non-Darcian flow model under local 
thermal equilibrium. The flow inside the porous chamber is 
governed by an expanded Darcy model by Brinkman 
Forchheimer. The simulation results are presented in terms of 
the Darcy numbers (Da), porosity (ε), phase deviation (ϕ), 
amplitude ratio (a), Grashof (Gr), and Forchheimer's 
coefficient (Γ). The heat transfer rate was increased by the 
amplitude ratio, porosity, Grashof, and Darcy numbers. 
Moreover, heating both sides of the vertical cavity increases 
the rate of heat transfer more than heating just one. 
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1. Introduction 
The past few decades have witnessed a continuous 

interest in heat transfer and fluid flow in enclosures at 
various thermal boundary conditions due to numerous 
applications in engineering, such as the operation of 
solar collectors, the cooling of electronic equipment, hot- 
and chilled-water storage tanks, furnaces, ovens, and 
many more. The walls may experience an uneven 
temperature distribution because of shadowing, the 
cooling of electrical components, and the absorption of 
solar energy. Therefore, it is crucial to understand the 
thermal convection mechanism in an enclosure with a 
non-uniform temperature distribution. 

Lakhal et al. [1] conducted a numerical analysis of 
transient natural convection heat transfer in a square 
cavity where the bottom wall was heated at varying 
temperature over time. According to their findings, they 
placed the heating element in the middle of the enclosure 
which showed a great improvement in heat transfer.  

Thermal convection in a heated square cavity was 
studied numerically over time by Kwak and Hyun [2]. 
They discovered that when the Rayleigh number 
increases, the resonance phenomenon becomes more 
noticeable and the Nusselt number is amplified. They 
concluded that, in the resonant situation, the interior 
core is impacted significantly by the hot-wall 
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temperature oscillation, and the temperature field there 
exhibits a periodic tilting of isotherms. 

Abourida et al.'s [3] numerical investigation of the 
natural convection heat transfer in an air-filled square 
cavity was conducted under various combinations of 
thermal variable boundary conditions on the cavity's 
horizontal walls. They found that, for large Rayleigh 
numbers, periodic heating can be utilized to either 
significantly lower or slightly increase heat losses in 
comparison to the constant temperature condition. 

Natural convection in a two-dimensional 
rectangular enclosure with adiabatic conditions on the 
bottom and sidewalls and a sinusoidal temperature 
profile on the upper wall was quantitatively studied by 
Sarris et al. [4]. It was discovered that conduction across 
the fluid layers dominates heat transfer as Rayleigh 
numbers increase, and that conduction decreases at very 
high Rayleigh numbers. Furthermore, it was discovered 
that when the Rayleigh number increased, the 
recirculation patterns moved away from one another 
and toward the matching upper wall corners. 

Kalabin et al.'s numerical study [5] investigates the 
natural convective heat transfer in an inclined square 
enclosure. It demonstrated how the oscillation 
frequency and inclination angle depend on the time-
averaged heat flux. For the two Grashof numbers under 
study, 2 ×105 and 3 ×105, it was discovered that the 
values of inclination angle 54o and dimensionless 
frequency f= 20 π correspond to the greatest heat 
transmission. 

The topic of porous cavities under varying 
temperatures or heat flow boundary conditions has 
drawn a lot of attention recently, in addition to natural 
convection in a non-porous cavity with uniform and non-
uniform thermal boundaries. Many thermal engineering 
applications, including heat exchangers, solar collectors, 
geothermal reservoir water circulation, grain storage, 
chemical catalytic reactors, and electronics cooling, use 
porous medium applications [6-7]. 

Natural convection in a porous chamber with 
adiabatic vertical walls, hot bottom walls, and cool top 
walls was investigated in a computational work by Saeid 
et al. [8]. It was found that as the amplitude of the 
temperature variation or the length of the heat source 
increases, the average Nusselt number also increases. 

Beckermann et al. [9] performed a numerical 
analysis of natural convection within a porous medium-
filled enclosure. They established the significance of the 
non-Darcian effects and used the Brinkman-
Forchheimer extended Darcy model. For three distinct 

Darcy number ranges, they offered correlations between 
Nusselt numbers. 

Steady natural convection in a porous cavity with 
uniform heat generation for a variety of aspect ratios and 
Rayleigh numbers were quantitatively studied by Du and 
Bilgen [10]. Natural convection in a porous cavity with 
variable porosity was examined by Nithiarasu et al. [11]. 
They noticed that the properties related to heat transfer 
and flow structure are affected by porosity. 

A porous enclosure with a linear temperature 
distribution on one side wall was studied by Kumar and 
Singh [12,13]. Later, they studied a porous enclosure 
with a linear temperature profile and one wavy side wall. 
For thermal stratification 0 ≤ S ≤1, it was discovered that 
the highest heat flux is achieved when the wave phase 
210o ≤ ø ≤ 240o. 

Hossain and Wilson [14] performed a numerical 
investigation of convective flow in a fluid-saturated 
porous media in a square enclosure with heat 
generation. Researchers found that when generation is 
increased, the enclosure's heated wall's proximity to the 
vortex and its thermal gradients are both reduced. 

Krishna et al. [15] performed a numerical study of 
natural convection in a porous square cavity with 
internal heat generation using a generalized non-Darcy 
technique. They demonstrated how the anisotropic 
characteristics significantly affect heat transmission and 
flow dynamics. 

The natural convection in a fluid-saturated porous 
annulus with discontinuous heating was explored 
statistically by Sankar et al. [16]. They discovered that 
the flow pattern and rate of heat transmission in the 
annular cavity are influenced by the heater's size and 
placement. 

Singh et al. [17] investigated the non-Darcian 
influence on laminar natural convection flow in a vertical 
channel that is partially filled with a porous material. 
According to their observations, skin friction at the wall 
increases when the Darcy number increases, while it 
decreases when the Grashof number, kinematic viscosity 
ratio, or porosity increases. 

Rahman et al. [18] investigated mixed convection 
using the finite element method in a rectangular cavity 
containing a heat-conducting horizontal circular 
cylinder. Varol et al. [19] conducted a numerical 
investigation into natural convection for a porous 
rectangular enclosure with a temperature profile that 
varies sinusoidally on the bottom wall. As the amplitude 
grows, so does the heat transmission, and as the aspect 
ratio increases, it reduces. 
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Sivasankaran et al. [20] numerically studied 
natural convection in a porous cavity with sinusoidal 
heating on both sidewalls. It was discovered that an 
increase in the amplitude ratio, porosity, and Darcy 
number resulted in a higher heat transfer rate. 

Based on a careful examination of the literature, it 
appears that the majority of research has been focused 
on partially heated vertical porous enclosures using 
Darcy's law as well as fully linearly heated or cooled 
vertical porous enclosures. 

The non-Darcian effect on the flow structure and 
the associated heat transfer for periodically heated 
porous enclosures, however, is not well understood. The 
primary aim of this study is to examine how inertia and 
viscous forces affect natural convection in a square 
cavity filled with saturated porous medium for 
sinusoidal temperature distribution on both side walls. 
This will be achieved by utilizing the Brinkman-
Forchheimer-extended Darcy model. To the best of my 
knowledge, this problem has never been considered 
before, so the presented results are novel and unique. 

 

2. Mathematical Analysis 
An incompressible, laminar, steady-state natural 

convection flow inside a square cavity filled with a 
porous media is investigated. The vertical walls of the 
cavity on the right and left are subjected to distinct 
sinusoidal temperature distributions at different phase 
shifts and amplitude ratios. The horizontal walls at the 
top and bottom were left insulated. 

  
Figure 1. Schematic model of the porous square enclosure 

with sinusoidal temperature distribution on both sides of the 
wall. 

 

A two-dimensional square cavity of length H is 
schematically depicted in Figure 1. The two-dimensional 
flow can be represented in terms of the velocity 
components in the x and y directions, u and v, 
respectively. 

In the present study, a Brinkman-Forchheimer 
modified Darcy’s model was used to model the porous 
medium. On the other hand, it is assumed that the porous 
medium is isotropic, homogenous, and in 
thermodynamic equilibrium with the fluid. The physical 
properties of the solid matrix and the fluid are assumed 
to be constant except for the buoyancy effects where the 
Bousinesq approximation is applied to account for the 
buoyancy force driving the convective motion of the 
fluid, as described by Ghani et al. [21]. Finally, viscous 
dissipation is neglected in the energy equation. 

The temperature boundary condition subjected to 
the left and right all of the square cavity is defined as 

𝑇(𝑦) = 𝑇𝑐  and 𝑇(𝑦) = 𝐴𝑠𝑖𝑛 (
2𝜋𝑦

𝐿
+ 𝜙), respectively here 

A is the cavity's right wall's sinusoidal temperature 
amplitude. and ϕ is the phase deviation. Depending on 
the assumption mentioned above, the governing 
equations in the dimensionless form are given as: 

Continuity: 

∂U

∂X
+

𝜕𝑉

𝜕𝑌
= 0                                                                            (1) 

Momentum: 

1

𝜀2 [𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
] = −

𝜕𝑃

𝜕𝑋
+

1

𝜀
∇2𝑈 −

𝑈

𝐷𝑎
−

𝛤

√𝐷𝑎
𝑈√𝑈2 + 𝑉2                                                            (2) 

1

𝜀2 [𝑈
𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
] = −

𝜕𝑃

𝜕𝑌
+

1

𝜀
∇2𝑉 −

𝑉

𝐷𝑎
−

𝛤

√𝐷𝑎
𝑉√𝑈2 + 𝑉2 + 𝐺𝑟𝜃                                                (3) 

Energy: 

𝑈
𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
=

1

𝑃𝑟
∇2𝜃                                                           (4)   

In the equations above, the dimensionless variables 
are defined as 

𝑋 =
𝑥

𝐻
, 𝑌 =

𝑦

𝐻
, 𝑈 =  

𝑢𝐻

ʋ
, 𝑉 =

𝑣𝐻

ʋ
, 𝜃 =

𝑇−𝑇𝑐

𝑇ℎ−𝑇𝑐
, 𝑃 =

 
𝑝𝐻2

𝜌𝜐2                                                                                (5) 

The non-dimensional parameters that appeared in 
the above equation i.e. Grashof, Darcy, and, Prandtl 
number, are defined as. 

𝜃
=

asin
(2

𝜋
𝑌

+
𝜙

) 

𝜃
=

asin
(2

𝜋
𝑌

) 
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𝐺𝑟 =  
𝑔𝛽∆𝑇𝐻3

𝜐2   𝐷𝑎 =  
𝐾

𝐻2   𝑃r =  
𝜐

𝛼
                             (6) 

The no-slip condition is imposed for all velocities 
on the walls, and the dimensionless thermal boundary 
conditions are as follows. 
𝑈 = 𝑉 = 0, 𝜃 = 0,   0 ≤ 𝑋 ≤ 1, 0 ≤ 𝑌 ≤ 1              (7)  

𝑈 = 𝑉 = 0,
𝜕𝜃

𝜕𝑌
= 0    𝑌 = 0  𝑎𝑛𝑑 1                               (8) 

𝑈 = 𝑉 = 0,   𝜃 = sin(2𝜋𝑌)   𝑋 = 0                                (9) 

𝑈 = 𝑉 = 0, 𝜃 = 𝐴 sin(2𝜋𝑌 + 𝜙)    𝑋 = 1                   (10)                             

Streamlines are considered the most adequate 
tools to visualize the fluid flow structure inside a two-
dimensional fluid flow, and consequently, the stream 
functions are defined as. 

  
𝜕𝜓

𝜕𝑌
= 𝑈    −

𝜕𝜓

𝜕𝑋
= 𝑉                                                      (11) 

When dealing with heat flux, isotherms are well 
established as very useful tools to visualize two-
dimensional convective heat transfer in an isotropic 
medium. Therefore, the local Nusselt number along the 
heated wall of the cavity is given as.  

 

𝑁𝑢 = (−
𝜕𝜃

𝜕𝑋
)

𝑋=1
                                                               (12)      

 
The averaged Nusselt number along the side walls is 
determined as follows. 

 

𝑁𝑢̅̅ ̅̅ = ∫ 𝑁𝑢𝑑𝑌                                                               (13) 
 

3. Numerical Analysis 
The finite element method is used to discretize the 

governing equations. A central-difference discretization 
method with second-order accuracy is employed for the 
momentum equation. An implementation of the QUICK 
scheme is made to compute the convective terms' third-
order value. To solve steady two-dimensional 
incompressible viscous flows, an implicit finite element 
approach is proposed. The coupling between the 
pressure and velocity fields is adopted by using the 
SIMPLE algorithm. When the nondimensional equations 
are discretized and integrated over each element, a 
system of non-linear algebraic equations is obtained. A 
high number of cells are clustered near the walls of the 
cavity to compensate for the high-velocity gradient in the 
boundary layer region of the viscous flow. The adequacy 
of the grid is verified by comparing the results of 
different grid sizes. A mesh refinement study was carried 
out to ensure grid-independent solutions. 

The grid independence is performed for Gr = 106, Da 
= 105, ε = 0.5, and Pr = 1It was discovered that for grid 
sizes 100×100 and 150×150, the average Nusselt 
number is almost the same. The numerical solution of the 
momentum equation formed in a grid was found to be 
invariant up to 150 grids in the y-direction. Thus, all 
velocity profiles are obtained using this grid size. An 
equivalent refinement investigation of the energy 
equation was carried out. It was found that increasing 
the number of grids did not affect the results. The 
simulation terminates when the residuals for the 
continuity, momentum, and energy equations approach 
10-6. 

 

4. Results and discussions 
       In this study, the verification of computer code is 
crucial. Two test cases are run to verify that the code for 
the current study is accurate. Firstly, the current 
computational code is validated by comparing its output 
with the results of previous studies on natural 
convection in a porous square cavity [22]. This can be 
seen in Table 1.  

 
Table 1. Comparison of average Nusselt number for square 

cavity with Pr = 1.0, Fc = 0.0, Da = 10-2 

Nu 

 ε = 0.4 ε = 0.9 

Ra Nithiarasu et 
al. [12] 

Present Nithiarasu 
et al. [12] 

Present 

103 1.010 1.008 1.023 1.018 

104 1.408 1.40 1.64 1.67 

105 2.983 3.16 3.91 4.08 

5*105 4.99 5.22 6.70 6.86 

First, table 1 shows that the present results are in good 
agreement with those obtained by Nithiarasu et al. [12] 
while slight differences appear in the height of Ra. 
However, it should be noted that much coarser meshes 
were used in Ref. [12]. Secondly, the present code's 
output is compared to Deng and Chang [23] finding of 
natural convection in a non-porous cavity with 
sinusoidal temperature fluctuation on both walls. The 
same geometrical and physical parameters are used for 
the numerical computations, and the outcomes are 
obtained. The streamlines and isotherms in Figure 2 are 
compared to the findings of Deng and Chang [23] and 
demonstrate a strong degree of agreement. These 
findings give confidence in the current code's accuracy 
for studying the subject under consideration. 
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Deng and Chang [15] Present study 

 
 

 

 

(a) Ra = 103   ε = 1, φ = 0 

 
 

 

 

(b) Ra = 105   ε = 1, φ = 𝜋/2 

 
Figure 2. Comparison of the average Nusselt number between 

the present work and that of Deng and Chang [15] 

 
This article demonstrates the impact of sinusoidal 

boundary conditions on fluid flow and heat transfer 

using numerical simulations of natural convection in a 
square porous cavity. Sinusoidal temperature boundary 
conditions are maintained for the vertical walls on the 
right and left.  
 
Da = 10-5  ε = 0.5          Da = 10-1 ε = 0.5        Da = 10-1 ε = 0.2 

   
(a) 

   
(b) 

   

(c) 

   
(d) 

   
(e) 

Figure 3. Streamlines for Darcy numbers and phase 
deviations with Fc = 0, a = 1, and Gr = 106. (a) φ = 0 (b) φ = 

π/4 (c) φ = π/2 (d) φ = 3π/4 and (e) φ = π. 

The Grashof numbers taken into consideration in 
this study fall between 103 and 107. The Darcy number 
was between 10-1 and 10-5. In the current simulation, the 
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angle that is taken into consideration has a phase 
deviation of ϕ = 0, π/4, π/2, 3π/2 and π. The amplitude 
ratios that are chosen are a = 0.25, 0.5, 0.75, 1. The 
Prandtl number, Pr = 1, is kept constant, and the porosity 
parameter, 0.2 and 0.5, are assumed. The streamlines 
within the porous cavity are shown in Fig. 3 for two 
Darcy numbers and different phase deviations. 

To simulate the limiting case of viscous flow and 
Darcy, the values of 10-5 and 10-1 were chosen as the 
Darcy numbers. At low Darcy number i.e. 10-5, the 
Brinkmann model reduces to Darcy law. This in turn 
slows down the convective motion because of the 
increase of the bulk friction drag induced by the solid 
matrix.  Nevertheless, as the Darcy number rises from 10-

5 to 10-1, the influence of viscous forces will become more 
significant, leading to a progressive decrease in the 
boundary friction resistance. Fluid circulation is thus 
greatly enhanced inside the porous cavity.  For Da = 10-5, 
ε = 0.5, and ϕ = 0, the flow pattern is made up of two 
comparable cells inside the porous cavity. The centers of 
rotation of the flow pattern are located near the right 
wall of the cavity. It is interesting to note that the cell's 
structure exhibits a different flow pattern when the 
Darcy number increases to 10-1. In this case, the core 
region of the two vortices shifted slightly to the left of the 
cavity, and the flow circulation near the left cavity was 
found to be weak. Moreover, when increasing the phase 
deviation, the flow pattern changed significantly. 
Increasing the value of phase deviation up to ϕ = π /4, 
two major cells occupy the cavity, and a very small cell 
appears near the right-top corner. Further increasing ϕ 
to π/2, two similar cells at the right-top and bottom 
edges are formed and finally, disappear at ϕ = π. It was 
observed the same effect on the flow structure for Da = 
10-1 and ε = 0.5.  

The isotherms for different phase deviations, 
porosity, and Darcy numbers for a fixed amplitude ratio 
value are shown in Figure 4. The right and left walls of 
the cavity contain the isotherms for every value of ϕ. All 
across the cavity, the isotherms are distributed. 
According to the isotherms, there is nearly equal heat 
transfer along each of the sidewalls at amplitude ratio a 
= 1. When comparing the isotherms for Da = 10-5 and 10-

1, it can be noted that the convection is stronger for Da = 
10-1 due to the denser thermal boundary layer 
throughout the right sidewall's heating area. On the 
other hand, when two temperature distributions vary 
sinusoidally, both sidewalls are active, which improves 
heat transfer. It can be noted that when the Darcy 

number rises from 10-5 to 10-1, the heat transmission 
method may switch from conduction to convection. 

 
Da = 10-5  ε = 0.5          Da = 10-1 ε = 0.5        Da = 10-1 ε = 0.2 

   
(a) 

   
(b) 

   

(c) 

   
(d) 

   
           (e)   

Figure 4. Isotherms for different phase deviations with a = 1 
Fc = 0, Pr = 0.71 and Ra = 106. (a) φ = 0 (b) φ = π/4 (c) φ = 

π/2 (d) φ = 3π/4 and (e) φ = π. 
 

         The mid-width profiles are displayed in Figure 5 for 
a range of Forchheimer and phase deviation values. It is 
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evident from the bi-directional velocity profiles that the 
cavity's multicellular flow patterns. In comparison to 
other values of ϕ, the fluid velocity at the cavity's mid-
width/ is lower for ϕ = 0. In heat transfer applications, 
the rate of heat transmission along the heated or cooled 
surfaces is crucial. For both velocity profiles, the velocity 
peak values rise as phase deviation grows. It is evident 
that for Forchheimer number 0.55, the horizontal 
velocity profile's magnitude is smaller. 
 

 

 
Figure 5. Velocity profile for different phase deviation and 

Forchheimer number, mid-width velocity: Gr = 10
6 , a = 1, ε = 

0.5, Da = 0.001. 

For the left and right vertical walls, Figure 6 shows 
the local Nusselt number for various phase deviations 
and Forchheimer number. The right sidewall is primarily 
affected by the phase deviation variation in heat transfer, 
while the left sidewall is not greatly impacted. The heat 
transfer is enhanced slightly along the wall when 
Forchheimer number 0.55. 

 

 

 
 
 

-50

-30

-10

10

30

50

0.0 0.2 0.4 0.6 0.8 1.0

U

Y

f = 0

f = p/4

f = p/2

f = 3p/4

f = p

Γ = 0.0

-50

-30

-10

10

30

50

0.0 0.2 0.4 0.6 0.8 1.0

U

Y

f = 0

f =p/4

f = p/2

f = 3p/4

f = p

Γ = 0.55

-20

-15

-10

-5

0

5

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0

N
u

l

Y

f = 0
f = p/4
f = p/2
f = 3p/4
f = p

Γ = 0.0

-20

-15

-10

-5

0

5

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0

N
u

l

Y

f = 0
f = p/4
f = p/2
f = 3p/4
f = p

Γ = 0.55

-15

-10

-5

0

5

10

15

0.0 0.2 0.4 0.6 0.8 1.0

N
u

r

Y

f = 0
f = p/4
f = p/2
f = 3p/4
f = p

Γ = 0.0



 

 76 

 
 

Figure 6. Local Nusselt number along the right and left wall 
for different phase deviations and Forchheimer number: Gr = 

10
6 , a = 1, ε = 0.5, Da = 10-3. 

 

  Figure 7 shows the local Nusselt number for the 
left and right vertical walls at varying amplitude ratios. 
The local Nusselt number curves make it evident how the 
boundary temperature affects the rate of heat transfer. 
Since the right wall remains at a = 0, there is no heat 
transfer along that wall. Increasing the amplitude ratio 
for a given value of the other parameters results in an 
increase in the heat transfer rate along the wall. 
 

 
(a) 

 
 
 

 
 

 
(b) 

Figure 7. Local Nusselt number along (a) left and (b) right 

wall for different amplitude ratios: Gr = 10
6 , ε = 0.5, Da = 10-3. 

One can realize the impact of the overall heat 
transfer across the cavity by plotting the average Nusselt 
number against the Darcy and Grashof numbers. Figure 
8 displays the average Nusselt number for various phase 
deviation values. As the Grashoff and Darcy numbers for 
a given phase deviation increase, the heat transfer rate 
also increases. With the phase deviation, no detectable 
tendency is observed. At ϕ = 3π/4, a greater rate of heat 
transmission is noted for all values of the Grashof 
number. The rate of heat transfer increases at ϕ = π for 
all values of the Grashof number when Da ≤ 10-3. Figure 
8 shows the average Nusselt number for various 
amplitude ratios in terms of Darcy and Grashof numbers 
at ϕ = 0 and ε = 0.5. As the amplitude ratio increases from 
0 to 1, it can be observed that the rate of heat transfer 
increases. Consequently, the right sidewall's sine wave 
temperature distribution enhances heat transfer 
profitably. 
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(a) 

 
(b) 

Figure 8. Average Nusselt number for different phase 
deviation (a) Nu against Da (b) Nu against Gr: a = 1, ε = 0.5, Γ = 

0 
 

For different amplitude ratios, Figure 9 displays 
the average Nusselt number versus Darcy and Grashof 
numbers at  ϕ = 0 and ε = 0.5. As the amplitude ratio rises 
from 0 to 1, the rate of heat transfer increases. This 
means that, in contrast to the situation of a uniform wall 
temperature, the nonuniform sinusoidal temperature 
distribution on the sidewall enhances heat transfer. 
Additionally, it is noted that the Darcy and Grashof 
numbers correlate with an increase in the average 
Nusselt number. 
 

 
(a) 

 
(b) 

Figure 9. Average Nusselt number along the right wall for 
different amplitude ratios (a) Nu against Da (b) Nu against 

Gr: ε = 0.5, Γ = 0, φ =π/2 

Figure 10 shows the average Nusselt number for 
two porosity values, as well as the amplitude ratio for 
various Forchheimer numbers. The rate of heat transfer 
rises as porosity increases for a given phase deviation 
and amplitude ratio. In other words, for all values of the 
Forchheimer numbers, a heat transfer rate is observed 
unchanged for Da ≤10-4 and Da ≥10-1, indicating that the 
heat transfer rate remains constant regardless of the 
Forchheimer numbers within this range. Furthermore, 
an enhancement in the rate of heat transfer is observed 
with an increase in the amplitude ratio. 

5

10

15

20

1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

N
u

av
g

Da

f = 0

f = p/4

f = p/2

f = 3p/4

f = p

Gr = 106

0

5

10

15

20

25

30

35

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

N
u

av
g

Gr

f = 0

f = p/4

f = p/2

f = 3p/4

f = p

Da = 10-3

2

4

6

8

10

12

14

16

1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

N
u

av
g

Da

a = 0

a = 0.5

a = 1

Gr = 106

0

5

10

15

20

25

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

N
u

av
g

Gr

a = 0

a = 0.5

a = 1

Da  = 10-3



 

 78 

 
(a) 

 
(b) 

Figure 10. Average Nusselt number for different porosity and 

different Forchheimer number, (a) f = p, a = 1 (b) f = p a = 
0 

5. Conclusion 
       In this investigation, we conducted a numerical 
analysis of the phenomenon of steady laminar buoyancy-
induced convection within a porous square chamber, 
where the vertical side walls were subjected to a variable 
sinusoidal temperature distribution. The primary focus 
of this study was to explore the influence of key 
parameters, including the amplitude ratio (a), porosity 
(ε), Grashof (Gr), Darcy numbers (Da), and phase 
deviation (ϕ). Our findings indicate a notable 
enhancement in heat transfer as the amplitude ratio 

rises from 0.25 to 1. Importantly, the application of a 
sinusoidal temperature distribution on the left side wall 
emerges as a profitable strategy for augmenting heat 
transfer within the cavity. Additionally, we observed that 
the phase deviation of the sine wave distribution on the 
left wall exerts a discernible impact on heat transfer 
within the cavity. It was also found that the phase 
deviation of the sinusoidal temperature distribution on 
the left wall affects the heat transfer inside the cavity. 
Moreover, it was found that the average Nusselt number 
increases with the porosity and Darcy and Grashof 
numbers.  
 
Nomenclature 

A the amplitude of the sinusoidal temperature 

function 

a amplitude ratio 

g gravity acceleration 

H length of a square cavity  

n the normal direction of the surface 

Nu, 

𝑁𝑢̅̅ ̅̅  

local and average Nusselt numbers 

p, P dimensional and dimensionless pressures 

Da Darcy number 

Γ Forchheimer number  

Ra Rayleigh number 

Pr Prandtl number 

Gr Grashof number 

∆𝜃 temperature scale 

T, θ dimensional and dimensionless temperature 

u, v dimensional velocity components in x and y 

directions 

U, V dimensionless velocity components in X and 

Y directions 

x, y dimensional coordinates 

X,Y dimensionless coordinates 
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α thermal diffusivity 

𝛽 expansion coefficient 

ε porosity 

ν kinematic viscosity 

ρ density 

ϕ phase deviation 

𝜓 stream function 

 Subscripts 

c cold wall 

h hot wall 

l left wall 

r right wall 
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