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Abstract - Linear momentum theory as applied to horizontal 
axis wind turbines (HAWTs) provides perhaps the most useful 
basis for understanding their operation. In particular, the 
theoretically derived expression for power coefficient represents 
a convenient measure of performance, as well as provides 
insight into optimal operating conditions. The typical 
interpretation of power coefficient as an energy conversion 
efficiency, however, especially in the context of converting the 
“power in the wind” to a power output, comes with several 
conceptual difficulties. In this paper we argue that power 
coefficient is better interpreted as the “relative capture area” of 
a wind turbine, a parameter analogous to relative capture width 
for ocean wave energy conversion devices. Such an 
interpretation removes the ambiguities associated with the 
efficiency concept, gives a more physically coherent picture of 
wind turbine operation, and provides the most pragmatic 
measure of performance. In addition, the relative capture idea is 
universally valid, applicable not only to HAWTs but all other 
wind machine designs as well. 
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1. Introduction: Linear Momentum Theory, 
Power Coefficient, and the Betz Limit 

Linear momentum theory applied to the operation 
of horizontal axis wind turbines (HAWTs) dates back at 
least to Betz [1] and provides one of the most accessible 
bases for conceptualizing the function of such devices. 

Given that many thorough treatments of the topic exist 
in the literature [2]-[4] we give only the most salient 
features here. 

Figure 1 gives a side view of the analysed system, 
which consists of a diverging stream tube extending 
from the downstream side of the wind turbine to the 
upstream side. The variables V and A refer to wind speed 
and cross-sectional area, respectively, whereas FT is the 
thrust force exerted on the hub by the wind and Ẇout is 
the power extracted by the turbine. The subscripts 
indicate the planes in which the windspeed corresponds 
to its undisturbed, freestream value (i), the value at the 
rotor plane (t), and the minimum downstream value 
before the wind reforms (e). Local static pressure varies 
in the flow direction but takes on atmospheric values at 
locations (i) and (e). The rotor sees a discontinuous drop 
in pressure in the flow direction and serves as the point 
at which all energy extraction occurs. With these 
idealizations the rotor is often referred to as an “actuator 
disc.” The flow is also modelled as incompressible with a 
density ρ, one-dimensional, isothermal, and frictionless. 

Macroscopic mass, momentum, and energy 
balances applied to the system in Figure 1 result in a 
predicted value for developed power given by 

 

�̇�𝑜𝑢𝑡 = 4𝑎(1 − 𝑎)2  
1

2
𝜌𝑉𝑖

3𝐴𝑡,  (1) 

 
where a is the axial induction factor, a parameter 
representing the fractional decrease in windspeed as the 
freestream wind approaches the actuator disc [2],  
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𝑎 =  
𝑉𝑖 − 𝑉𝑡

𝑉𝑖
.  (2) 

 

 
Figure 1. Diagram of stream tube used in the application of 
linear momentum theory. The hub at At acts as an “actuator 
disc” across which all energy extraction occurs. 

 
A common reference value for power in the 

operation of HAWTs is the “power in the wind,” the 
amount of kinetic energy per unit time in a flow of wind 
with a cross sectional area equivalent to the rotor swept 
area, At,  
 

𝑃𝑤𝑖𝑛𝑑 =
𝜌𝑉𝑖

3𝐴𝑡

2
.  (3) 

 
Expressing the developed power as compared to the 
power in the wind gives the traditional definition of 
power coefficient,  
 

𝐶𝑃 =
�̇�𝑜𝑢𝑡

𝑃𝑤𝑖𝑛𝑑
.  (4) 

 
Equations 1, 3, and 4 are easily combined to show 

that linear momentum theory predicts power coefficient 
to be a function of axial induction factor only, 
 

𝐶𝑃 = 4𝑎(1 − 𝑎)2.  (5) 
 
The polynomial form of Eq. 5 suggests a maximum value 
of CP. Differentiating Eq. 5 with respect to axial induction 
factor and setting it equal to zero gives this maximum as 
16/27, occurring at a value of a = 1/3 : 

 

𝐶𝑃,𝑚𝑎𝑥 =
16

27
,  when 𝑎 =

1

3
.  (6) 

Equation (6) represents the famous Betz limit for 
wind turbine performance, stating that a HAWT can 
deliver a maximum of just under 60% (59.3%) of the 
“power in the wind.” Figure 2 shows the relationship of 
CP to a based on linear momentum theory.  

 

 
Figure 2. Relationship of power coefficient to axial induction 
factor according to linear momentum theory. The maximum 
value of CP is 16/27 and occurs at a = 1/3. 

 
Linear momentum theory also gives a theoretical 

expression for the thrust the wind exerts on the actuator 
disc as 

 

𝐹𝑇 = 𝐶𝑇  
1

2
𝜌𝑉𝑖

2𝐴𝑡,  (7) 

 
where CT=4a(1-a) is the thrust coefficient. Unlike the 
power coefficient, the maximum value of thrust 
coefficient is CT,max = 1, occurring at a = 1/2. Of note is that 
a = 1/2 corresponds to a wind speed of zero at (e) and 
that maximum power and maximum thrust are therefore 
not realised at the same value of axial induction factor. 

We should also note that although linear 
momentum theory predicts power coefficient to be a 
function only of axial induction factor, the definitions of 
power in the wind and power coefficient given in Eqs. 3 
and 4, respectively, are not subject to any of the 
assumptions of the theory. Indeed, the power coefficient 
of Eq. 4 is the most common measure of performance 
used for all real HAWTs with Eq. 5 often serving as an 
idealised upper limit used for purposes of comparison. 
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2. The Problem of Power Coefficient as 
Conversion Efficiency 

Though the power coefficient likely serves as the 
most useful measure of performance for HAWTs, its 
interpretation as an energy conversion efficiency comes 
with several inconsistencies. Principal among these is 
what best represents the various inputs and outputs of 
energy. We outline the inconsistencies below.  

  
2. 1. Competing Definitions of Efficiency 

In defining a conversion efficiency, we typically 
track the input and output energy flows of a device, the 
efficiency being the ratio of the desired output to some 
input that represents the depletion of a resource. If the 
energy related quantities are power, then the efficiency 
becomes  

 

𝜂 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
, (8) 

 
where Pin is input power and Pout is the desired output 
power.  

Implicit in employing such an efficiency is that part 
of the input power is not converted to the useful output, 
but rather to some other unusable form and/or that it is 
rejected elsewhere. Applied to the steady-state 
operation of a DC motor as in Figure 3, for example, only 
part of the input electrical power Ẇelec,in is converted to 
the desired mechanical power, Ẇout, the remaining input 
power being irreversibly dissipated as heat transfer to 
the surroundings, Q̇out. This results in a conversion 
efficiency of η = Ẇout/Ẇelec,in. 
 

 
Figure 3. A Sankey diagram showing the energy flows for the 
steady operation of a DC motor. Part of the energy resource is 
irreversibly dissipated as heat transfer.  

 

If we consider the input to a wind turbine to be the 
power in the wind Pwind with a corresponding useful 
output of Ẇout, then Eq. 8 gives the efficiency to be 

 

𝜂 =
�̇�𝑜𝑢𝑡

𝑃𝑤𝑖𝑛𝑑
,  (9) 

 
which is identical to the power coefficient of Eq. 4. Figure 
2 above would therefore suggest that the efficiency of a 
HAWT can never be one, but rather can reach a 
maximum of only 16/27 at a = 1/3.  

However, when considering the stream tube of 
Figure 1 from which the results of linear momentum 
theory are derived, we envision a different set of 
inputs/outputs. Figure 4 shows the system of Figure 1 
from an energy perspective.  
 

 
Figure 4. A Sankey diagram showing energy flows for the 
stream tube used for analysis in linear momentum theory. 

 
Conservation on energy as applied to the system of 

Figure 4 gives the power output as the difference 
between the inlet and exit kinetic energy flows: 

 

�̇�𝑜𝑢𝑡 = �̇� (
𝑉𝑖

2

2
−

𝑉𝑒
2

2
) = 𝜌𝐴𝑖𝑉𝑖 (

𝑉𝑖
2

2
−

𝑉𝑒
2

2
),  (10) 

 
where ṁ=ρAiVi is the mass flowrate of wind through the 
stream tube. Rearranging and making use of the axial 
induction factor,  

 

�̇�𝑜𝑢𝑡 =
𝜌𝐴𝑖𝑉𝑖

3

2
(1 −

𝑉𝑒
2

𝑉𝑖
2)

=
𝜌𝐴𝑖𝑉𝑖

3

2
4𝑎(1 − 𝑎).  

(11) 
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The only energy input in Figure 4 is the flow of kinetic 
energy to the stream tube such that input power is Pin = 
½ ρAiVi3. Thus the conversion efficiency of Eq. 8 becomes 
 

𝜂 =
�̇�𝑜𝑢𝑡

𝑃𝑖𝑛
=

�̇�𝑜𝑢𝑡

𝜌𝐴𝑖𝑉𝑖
3

2

= 4𝑎(1 − 𝑎).  (12) 

 
Figure 5 gives a visualisation the conversion efficiency of 
Eq. 12. 
 

 
Figure 5. Variation of energy conversion efficiency as given by 
Eq. 12. 
 

Clearly Figure 5 gives a much different picture of 
efficiency than Figure 2. Rather than a maximum value of 
16/27, Figure 5 suggests that a HAWT can in fact achieve 
an efficiency of unity, and that that efficiency occurs at 
a=1/2, not at a=1/3. The reader may also recognize that 
the expressions for η and the thrust coefficient CT (Eq. 7) 
are the same, implying that maximum efficiency and 
maximum thrust force are indeed achieved 
simultaneously, contrary to the common interpretation 
of power coefficient as an efficiency. 

 
2. 2. Ambiguity of Inputs 

The discrepancy between the two definitions for 
efficiency arises from the different assumed inputs for 
each. In Eq. 12, Pin corresponds to the power of the 
upstream wind for the actual mass flowrate passing 
through the actuator disc, ṁ = ρAiVi. On the other hand, 
Pwind is the power of a hypothetical mass flow of wind at 
speed Vi through the actuator area, At; that is, ṁwind = 
ρAtVi. In other words, Pwind is the power that would be 
contained in a cross-sectional area of At if the turbine 

were not present. As such some authors refer to Pwind as 
the “power of the undisturbed wind” [4]. 

Figure 6 shows the air flow associated with the 
wind turbine and allows us to contrast the different 
flowrates. The blue shading corresponds to the actual 
mass flow through stream tube, ṁ=ρAiVi, whereas the 
grey shading is the mass flow associated with ṁwind that 
is diverted around the turbine, ṁdefl. The mass flow 
corresponding to Pwind is the sum of the two, ṁwind = ṁ + 
ṁdefl. 

Since the speed of the flow decreases as it 
approaches the actuator disc, the incompressibility of 
the fluid requires that the upstream area Ai be less than 
that of the actuator disc, At. Consequently, the flow rate 
through the wind turbine ṁ must be less than ṁwind, 
becoming smaller still with increasing values of the axial 
induction factor. Tracking a quantity of ṁwind starting 
upstream of the actuator disc, we find that ṁ = (1-a)ṁwind 
makes its way through the actuator disc whereas ṁdefl = 
aṁwind bypasses the actuator disc completely. Only in the 
case of zero power output, when a=0, does ṁwind = ṁ. 
(Fig. 6b.) We may therefore question whether Pwind truly 
represents the power input to the turbine, since it is the 
power associated with ṁwind and not with ṁ. 

 

 
Figure 6. Not all of the mass flow associated with the power in 
the wind flows through the actuator disc. (a) For any a > 0, a 
fraction of ṁwind is deflected around the actuator disc. (b) ṁ = 
ṁwind only when a = 0, which corresponds to zero power 
output. 

(a) 

(b) 
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Of the flow that does go through the actuator, a 
fraction η = 4a(1-a) of that is converted to mechanical 
power, the remainder exiting with the flow downstream 
through Ae. Hence, the power coefficient accounts for two 
different effects, the diversion of part of ṁwind around the 
actuator disc and the partial conversion of kinetic energy 
into power for the flow through the disc itself: 

 
𝐶𝑃

= [fraction of �̇�𝑤𝑖𝑛𝑑  passing through 𝐴𝑡]

∙ [fraction of KE converted to �̇�𝑜𝑢𝑡] 
= [1 − 𝑎] ∙ [𝜂].  

(13) 

 
Figure 7 shows the relative proportions of Pwind as 

a function of axial induction factor. The figure gives 
additional insight into the power coefficient as shown in 
Figure 2 in that the two effects of Eq. 13 are 
distinguishable.  

The maximum power output is realized at a =1/3 
even though the conversion efficiency of Eq.12 gives a 
value of η = 8/9 at that point. As a increases beyond 1/3, 
the power output decreases despite an increasing η due 
to smaller inputs of Pin delivered to the actuator disc. The 
trend continues until the total output of the turbine 
drops to 50% of Pwind at a=1/2 although η = 1. 

 

 
Figure 7. Relative proportions of Pwind. The grey area is the 
fraction of Pwind that is deflected around the actuator. Of the 
power delivered to the actuator, the yellow area is the fraction 
converted to power output whereas the blue area remains 
unconverted, ultimately exiting through Ae. 

 
 
 
 

3. Reinterpretation of Power Coefficient as a 
Measure of Performance 

Resolving the ambiguity of CP as an efficiency 
resides in its reinterpretation as a different measure of 
performance. Though we may loosely consider the 
power coefficient as an efficiency in that it compares 
power output to a conveniently calculable reference, 
with the result (usually) being less than unity, its 
interpretation as an energy conversion efficiency poses 
several difficulties. In particular, the discussion above 
demonstrates that such an interpretation of CP would 
require us to make the rather awkward modelling 
assumption that a flow of wind travelling around the 
turbine—a flow that avoids the actuator disc 
altogether—constitutes part of the inputs and outputs of 
the device. Furthermore, linear momentum theory 
invokes isothermal and frictionless assumptions, which 
indicates reversible flow. Hence, there is no theoretical 
foundation from which to assert that 100% of the kinetic 
energy of a flow cannot be extracted as power. Indeed, 
this is what Eqs. 10 and 12 along with Figure 5 indicate, 
namely, that the rate of kinetic energy input Pin is 
completely converted to output power when the 
downstream area is very large and the speed Ve becomes 
vanishingly small.  

And so, if power coefficient does not constitute an 
energy conversion efficiency, what exactly does it 
measure? We suggest that the best interpretation of 
power coefficient is a turbine’s relative capture area, 
analogous to the concept of relative capture width for 
ocean wave energy conversion devices. Such an 
interpretation bypasses the discrepancies associated 
with efficiency and gives a clearer physical picture of 
HAWT performance.  

To be clear, we are not arguing that power 
coefficient is a poor measure of performance. To the 
contrary, we believe it to be the preferred measure. We 
simply argue that further clarification as to what it 
represents is required in order to extract the most value 
from its application. 

 
3. 1. Relative Capture Width in Ocean Energy Devices 

Given that there is effectively no finite amount of 
power that the wind contains per se, part of the problem 
in defining an energy conversion efficiency for a wind 
turbine rests in characterising the energy resource itself. 
Ocean energy engineering faces a similar challenge in 
characterising the energy content of ocean waves. To 
address this issue, ocean wave energy content at a 
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specific location is typically quantified as a power per 
unit length of wavefront, P’. (Fig. 8.) 

Furthermore, rather than an efficiency, the 
common measure of performance for an ocean wave 
energy device is capture width, Cw, the equivalent width 
of wavefront corresponding to the power a device 
generates. The larger the capture width of a device, the 
more power it produces, regardless of the value of the 
local energy resource P’. Thus, the capture width idea 
provides a useful measure of performance while 
forthrightly acknowledging the difficulty in defining a 
discrete amount of power input to a conversion device.  

In turn, the capture width divided by the widest 
linear dimension of the device gives a dimensionless 
measure of performance, the relative capture width, Cr. 
Relative capture width measures the power produced by 
an ocean energy device relative to its size. It also allows 
us to compare the performance of devices of different 
dimensions and with different principles of operation. A 
minimum relative capture width of three or greater is 
often cited as a guideline for the potential success of a 
design [2]. Also pointed out in [2] is that since the 
relative capture width is often greater than one, it is not 
helpful to consider it an efficiency. 

 

 
Figure 8. Energy content in ocean waves is quantified by the 
power per unit wave front, P’. The relative capture width Cr of 
a conversion device is the equivalent length of wavefront 
corresponding to the output power (the capture width Cw) 
divided by its widest linear dimension, L. 

 
3. 2. Power Coefficient as Relative Capture Area 

The wind energy analogue of power per unit 
length of ocean wavefront is referred to as the power 
density of the wind. (Fig. 9.) As opposed to power per unit 
length, the power density is expressed as power per unit 
area [5], 

 

𝑃𝑤𝑖𝑛𝑑
′′ =

𝜌𝑉𝑖
3

2
.  (14) 

 
Likewise, we can characterize the output of a wind 
turbine in terms of how much of the wind power density 
it captures expressed as an area, 

 
�̇�𝑜𝑢𝑡 = 𝑃𝑤𝑖𝑛𝑑

′′ 𝐴𝑐𝑎𝑝,  (15) 
 

where we refer to Acap as the turbine’s capture area. Like 
the capture width for ocean energy devices, the capture 
area of a wind turbine by itself is a useful measure of 
performance in that the larger its value, the more power 
the turbine produces regardless of the local wind energy 
density. 

Finally, the capture area divided by the area of the 
actuator disc At defines the relative capture area, which 
measures the amount of wind power density captured by 
a turbine relative to its size. Equations 3, 4, 14, and 15 
are easily rearranged to show that relative capture area 
is identically equal to the power coefficient: 

 
𝐴𝑐𝑎𝑝

𝐴𝑡
=

𝑃𝑤𝑖𝑛𝑑
′′ 𝐴𝑐𝑎𝑝

𝑃𝑤𝑖𝑛𝑑
′′ 𝐴𝑡

=
�̇�𝑜𝑢𝑡

𝑃𝑤𝑖𝑛𝑑
= 𝐶𝑃.  (16) 

 

 
Figure 9. The capture area Acap of a turbine is the equivalent 
area of the wind power density corresponding to its power 
output of a wind turbine. The relative capture area Acap/At is 
identically equal to the power coefficient.  

 
Equation 16 gives an alternate and completely 

equivalent definition of the power coefficient for wind 
turbines. Just as the traditional definition of power 
coefficient of Eq. 4 does not require us to make use of any 
of the assumptions of linear momentum theory for its 
validity, neither does the alternate definition of Eq. 16. 
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The idealised performance associated with linear 
momentum theory serves as a useful basis for 
comparison for the operation of real HAWTs regardless 
of the way in which power coefficient is interpreted.  
 
 

4. Discussion: Advantages of the Relative 
Capture Area Interpretation 

The interpretation of power coefficient as a 
relative capture area offers several advantages over the 
efficiency interpretation. Primarily, it avoids the 
ambiguity of what constitutes an input to the device by 
more cleanly identifying the available energy resource as 
the wind power density as opposed to the “power in the 
wind.” The relative capture area interpretation provides 
a great advantage in this explicit acknowledgement of 
the true nature of the supply of wind energy.  

Quantifying the available power to a turbine as the 
power in the wind makes for a perplexing situation in 
which a resource is treated in part as a function of the 
device designed to harness it. This is because Pwind 
depends on both P” and the physical size of the turbine. 
Use of the correct conversion efficiency of Eq. (12) 
actually fairs worse in this regard, as the legitimate 
power input Pin=½ρAiVi3 also depends on the inlet area 
of the stream tube Ai. This area in turn depends on the 
size of the wind turbine and its variable operating 
conditions. By contrast, wind power density is a function 
only of geographical location at a certain point in time. 

That power density represents the appropriate 
framing of the wind as an energy resource is reflected in 
the steady increase in size of turbine designs over the 
past forty years. In that time, turbine blade length has 
increased by a factor of ten, which corresponds to an 
increase in actuator area by a factor of 100. Non-
coincidentally, the power generated by wind turbines 
has also increased by roughly a factor of 100 in the same 
time period, going from 55 kW in 1981 to 5.6 MW in 2019 
[6], a clear indication of an effort to increase capture 
area. Furthermore, increased rotor size and hub heights 
are also meant to expose turbines to the higher wind 
speeds further up in the atmospheric boundary layer and 
therefore avail themselves of the larger power densities 
there. The increase in rated power of wind turbines is 
thus driven by increases in both capture area and power 
density. 

In recognition of the resource of wind energy 
being a power density, both capture area and relative 
capture area serve as obvious measures of performance. 
For any turbine, we wish the capture area to be as large 

as possible, thereby maximizing power output for a 
given P”. When considering relative capture area, the 
actuator area At is indicative of the turbine’s size, and 
thus, its total direct cost including both capital and 
operational costs [8]. For two turbines with the same 
value of Acap, then, we prefer the one with the larger 
relative capture area, as it offers us the more economical 
option for the same performance even if it operates at a 
smaller conversion efficiency.  

The importance of capture area is also reflected in 
the U.S. industry trend of recent years towards new wind 
plant construction in sites of lower average wind speeds. 
With the smaller average power densities encountered 
in such sites, the push has been towards turbine designs 
with lower specific power, or nameplate turbine power 
divided by rotor swept area [7]. Energy costs are 
reduced via control strategies that maximize CP at below 
rated speeds, leading to overall increases in turbines 
running near full capacity. For this strategy to work, 
capture area must be increased in order to account for 
the decreased power density at low wind speeds while 
simultaneously maintaining or increasing captured 
power. At conditions above rated wind speed, capture 
area is effectively decreased by pitching the blades to 
reduce aerodynamic loads, thereby maintaining rated 
power at higher power densities. 

We may also argue that relative capture area is the 
preferred measure of performance over any energy 
conversion efficiency, regardless of how it is defined, in 
that it better aligns with the objective of the device. As an 
illustration of this point, we may consider the contrast 
between fuel economy and thermal efficiency in motor 
vehicles. In internal combustion engines, thermal 
efficiency is often highest at full throttle, indicating that 
the largest conversion of chemical energy into 
mechanical power occurs at the vehicle’s top speeds. 
Given that air drag scales with the square of vehicle 
speed, however, operating at very high speeds leads to 
smaller distances travelled for the same amount of fuel 
consumed. Hence, if our objective is to travel as long a 
distance as possible per unit energy consumed, we may 
be willing to forgo always operating at the engine’s 
highest thermal efficiency [9]. 

Lastly, since CP is not a true conversion efficiency, 
we need not limit its value to between zero and one. This 
is an important point when we consider wind turbine 
designs that seemingly surpass the Betz limit, such as 
HAWTs that include shrouds as outlined in [10]-[12]. 
The shrouds, usually in the form of diffusers, increase 
pressure drop across the actuator disc and thus increase 
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mass flow. This results in power coefficients that are 2-5 
times larger than traditional designs and therefore 
values that sometimes surpass unity. In [13] it is 
suggested that although the cited power coefficients are 
legitimate, they cease to be efficiencies for shrouded 
turbines. A correction to the power coefficient that 
effectively adjusts Pwind to account for the increased mass 
flow is suggested, thereby reinstating the power 
coefficient’s alleged status as conversion efficiency, and 
once again recognizing the Betz limit as its maximum 
value. 

If we abandon the idea of power coefficient as 
conversion efficiency to begin with, however, such 
adjustments become moot. A relative capture area 
greater than unity simply means that the effective area 
of wind power density captured by a HAWT is larger 
than its frontal area. Though a traditional, unshrouded 
HAWT may have an upper limit of CP.,max = 16/27, it does 
not follow that other designs with different operating 
principles are necessarily so constrained. That being the 
case, power coefficient as relative capture area becomes 
the common measure of performance for both shrouded 
and unshrouded designs, and for all other wind turbines 
as well, including vertical axis designs and drag 
machines. For a wind turbine of a given size, maximizing 
the relative capture area will always maximize power 
output, whatever the energy conversion mechanism it 
employs and the efficiency thereof. 

 

4. Conclusion 
In this paper we have shown that the power 

coefficient for horizontal axis wind turbines is best 
thought of as its relative capture area, a parameter 
comparing the equivalent area of the wind power 
density captured by a turbine relative to the turbine’s 
size. The interpretation avoids the ambiguities 
associated with the power coefficient’s interpretation as 
an energy conversion efficiency, better aligns with the 
objectives of operating wind turbines, and also serves as 
a common measure of performance for all wind turbines 
regardless of construction and operating principle. 
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