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Abstract - This paper investigates an analytical solution of 2D 
steady-state heat conduction in two orthotropic cylinders. The 
whole lateral surface is subjected to a flux density while the end 
sections are maintained at prescribed temperatures. The 
resolution of the problem is carried out analytically by the 
variable separation technique, taking into account the 
boundary conditions and the continuity of temperatures and 
flux at the interface between the two mediums.  
The solution expressed in terms of Bessel function showed that 
ratio of the main thermal conductivities for each medium and 
the ratio of the radial thermal conductivities of the two 
mediums have a significant effect on the thermal level in the 
two mediums as well as on the appearance of the isotherms. 
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1. Introduction
 Orthotropic multilayer is characteristic of 

orthotropic materials consisting of several layers. The 
interest shown in these materials is explained by the 
very fact that they combine physical, mechanical and 
thermal properties  of various  substances. These 
indicated materials are used in the aerospace [1-3] and 
heat exchangers [4-5],  

The orthotropic materials were investigated in 
many studies by the analysis of the orthotropic heat 
conduction equation. F. de Monte [6] present the 

transient heat conduction problems in one-dimensional 
multi-layer solids solved by conventional 
techniques supported Vodicka's approach. Haji-Sheikh 
et al [7,8] studied the steady thermal behavior of a two-
slab 3D body, by the resolution of the steady-state 
multidirectional heat equation using technique of 
separate variables. They showed that steady-state 
solution of a temperature field in a multi-layer body is 
an invaluable tool for analyzing heat spreaders in 
electronic cooling applications. This includes heat 
spreaders with orthotropic or isotropic layers. M. 
Norouzi et al [9] studies a particular analytical solution 
for steady conductive heat transfer in multilayer 
spherical fiber reinforced composite laminates. The 
orthotropic temperature distribution of laminate is 
obtained under linear boundary conditions. To get the 
precise solution, the separation of variables method is 
employed, and therefore the set of equations associated 
with the coefficient of Fourier–Legendre series of 
temperature distribution is solved using the recursive 
Thomas algorithm.  

The notion of layer cylinder is also widely used in 
investigating the thermal properties of composite 
materials. Heat transfer in a multilayer cylinder is a 
problem of significant engineering interest [10,11]. The 
use of a combination of materials with varying thermal 
and mechanical properties often helps provide desired 
performance characteristics for engineering structures. 
For example, nuclear fuel rods in a nuclear reactor [12], 
compressed hydrogen storage [13], superconducting 
cables [14], piezoelectric transducers [15] and civil 
engineering structures [16]. 

Several studies have been made in the case of 
heat transfer in a multilayer cylindrical composite, 
among others M.H. Kayhani et al [17] who present 
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an analytical solution  for warmth  conduction  in 
a  cylindrical multilayer composite laminate during 
which the fiber direction may vary between layers. The 
analytical solution is suitable for various conditions. Ali 
Keifari Kheibari et al [18] present an analytical solution 
for the distribution of non-axisymmetric 
temperature during a long multi-layer cylinder, using 
the separation of variables method. They studied the 
effect of fiber angle on the temperature distribution in 
radial and circumferential directions. H.M. Wang and 
C.B. Liu [19] Obtained an analytical solution for two-
dimensional transient heat conduction during a fiber-
reinforced multilayer cylindrical. Separation of 
variables method is used to develop the transient 
temperature fields. The presented analytical solution 
contains trigonometric series and Bessel series, within 
the polar coordinates, the solving procedure is 
performed directly in time domain and investigated the 
effect of the fibers’ angle on the transient heat 
conduction behaviors.  

In the same context of multilayers, the present 
paper investigated analytically heat conduction in two 
orthotropic cylinders according longitudinal and radial 
directions ( ,r z ). The main innovation of the present 

study is the derivation of the most general analytical 
solution based on general boundary conditions, which 
are based on Dirichlet and Newman boundary 
conditions. For this purpose, we use the variable 
separation technique, taking into account the boundary 
conditions and the continuity of the temperatures and 
flux at the interface between the two mediums. This 
resolution in dimensionless form, expressed in terms of 
the Bessel functions, made it possible to apprehend the 
effect of the study parameters, namely the ratio of the 
main thermal conductivities for each medium as well as 
the ratio of the radial thermal conductivities of the two 
mediums. 

 
2. Problem Formulation and Mathematical 
Modelling 

The study concerns two orthotropic medium in 

coaxial cylindrical geometry of length L  (Figure 1). 

One of the medium symbolized by A  occupies the 
interior cylinder of radius a , while the second medium 

B  is confined in the annular space limited by the rays 

a  and b . The left and right ends of the two cylinder    

( 0z =  and z L= ) are maintained at the same constant 

temperatures ( 0T ), while the lateral surface ( r b= ) is 

subjected to an imposed flux density.  
 

 
Figure 1. Three-dimensional representation of the two 

orthotropic cylinders. 

 

Based on the previous assumptions, the equations 
of the heat diffusion for the two orthotropic mediums 
are written as: 
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The above equation is applicable respectively for 

the two orthotropic mediums ( i A=  and B ). 
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The above equations (1)-(7) can be cast in 
dimensionless form (9)-(15) by incorporating the 
dimensionless parameters (8): 
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Where, the main thermal conductivities ratio
i

zz

i

rr

k

k
  

is supposed the same for the two mediums in the study 
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zz

rr

k

k
.  

0Z = :               ( , 0) 0i R Z = =

                                              

         (10) 

Z G= :               ( , ) 0i R Z G = =

                                              

         (11) 

0R = :                   

0

0
A

R
R

=


=


                           

    

                         (12) 

1R = :               
2

1

B

R
R G



=


= 


                                                                 (13) 

R = :        ( , ) ( , )A B

R R
R Z R Z

 = =
 =                              

                     

          (14) 

R = :           
1

.
A B

R R
R R

 


= =

 
=

 
      

                                      

          (15) 

Where, 
a

b
 = . 

Solving the above equations system provides 
access to the temperature profile in the two mediums 

according to the Z  and R  directions cylindrical 
coordinates. 

 
3. Analytical Solution 

The resolution of the problem is carried out 
analytically by the variable separation technique, taking 
into account the boundary conditions and the 
continuity of the temperatures and flux at the interface 
between the two mediums.  

The first step is the use of the boundary 
conditions (equations 10-13), leading to an 

intermediate solution of the dimensionless 

temperatures of medium A  and B  in the following 
forms: 

( ) ( )0

1

( , ) sin .A

n

n

R Z A Z I R 


=

 =                

( )

( )

( )

( )
( ) ( ) ( )0 1

0 0

1 1 1

( , ) . . .sinB

n

n

I R K
R Z D I R K R Z

n I I

 
  

  



=

  
 = + +   

   


 

 (16) 

  
 

 

 (17) 

 

 

Where, zz
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 =  and 

n
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 =  .  

0I , 1I : Are Bessel functions of the first kind respectively 

of order 0 and 1. 

0K , 1K : Are Bessel functions of the second kind 

respectively of order 0 and 1. 

The problem constants nA  and nD  are 

determined by the condition of continuity of the 

temperature and the flux at the interface 
a

b
 =  

(equations 14 and 15). This makes it possible to 
establish the final expressions of dimensionless 

temperatures of medium A  and B  in the following 
forms: 
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The temperatures within each medium defined by 
equations 18 and 19 are determined according to an 
iterative calculation, by comparing the successive all 
inside temperatures difference between two serial 

order n  and 1n+  with a criterion of convergence  , 
according to :  

A A B B( , , 1) ( , , ) ( , , 1) ( , , )R Z n R Z n R Z n R Z n  + − +  + −    (20) 

 

4. Problem Data 
The study is conducted for two orthotropic 

mediums in cylindrical geometry supposed of a form 
factor 2G = , submitted to a sinusoidal flux                                    
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( sin( )
Z

G


 = ) on the lateral surface. The mediums are 

characterized by main thermal conductivities according 
the axial and radial direction. The effect of these 
parameters is represented by the values of radial 
thermal conductivities ratio of the two mediums, 

A

rr

B

rr

k

k
 = , taking values equal to 0.5, 1, 2 and by the ratio 

between axial and radial conductivity 
zz

rr

k

k
 equal to 

0.25, 1, 4. The orthotropic mediums have a symmetrical 
configuration in term of axial boundary conditions

( , 0) 0 , ( , ) 0i iR Z R Z G = =  = = . Interface location 

between the mediums is taking equal to 0.5 = . 

 

5. Results and Discussion 
Figures [2-10] show the steady state radial and 

axial temperature within the two mediums for the 
various values of the study parameters. For each figure, 
we have simultaneously the domains associated to the 

A  and B  mediums separated by the interface 

characterized by 
a

b
 = .  

Figures [2-4] present the radial temperature 

profile in the two mediums middle ( , )
2

i G
R  

according to a given value of radial thermal 

conductivities ratio   associated to various values of 

the main thermal conductivities zz

rr

k

k
. Thus, for a fixed 

value of   , the radial temperature profile increases 
from the center to the outer lateral surface cylinder. 

Increase of main thermal conductivities zz

rr

k

k
  ratio 

reduces thermal level in medium A  and increase that 

in medium B . In addition, we notice that for a given 

value of main thermal conductivities ratio zz

rr

k

k
 , the 

increase of   leads to the same conclusions with an 
overall reduction in the thermal level. Overall, it 
appears that medium B is more sensitive to the effect of 

zz

rr

k

k
. In addition, we notice a particular radius 

corresponding to inversion of the medium B  

temperature with respect to  zz

rr

k

k
. This particular radius 

decreases by increasing  .  

 

 
Figure 2. Middle radial temperature for 0.5 =  

 
 

 
Figure 3. Middle radial temperature for 1 =  



 248 

 

 
Figure 4. Middle radial temperature for 2 =  

 

Figures [5-10] shows the axial temperature profile at 
mid-height of the two mediums respectively    

( , )
2

A Z



 and 

1
( , )

2

B Z
+

  according to the study 

parameters. Taking into account the sections boundary 

conditions ( , 0) 0 , ( , ) 0i iR Z R Z G = =  = = , the axial 

profiles temperature for the two medium are 
symmetrical and depend on the values of the ratio of 

the main thermal conductivities zz

rr

k

k
 and the ratio of the 

radial thermal conductivities  . These parameters have 
the same effect on the internal medium A. Their 
increases reduce its thermal level. However, the effect 

of zz

rr

k

k
 and consequently of axial conduction with 

respect to radial conduction is most noticeable. With 

regard to medium B , the impact is less significant 
compared to internal medium. The effect of the ratio 

zz

rr

k

k
 only becomes appreciable at high axial 

conductivity. 

 

 
Figure 5. Axial temperature at mid-height of medium A  for 

0.5 =  

 
 

 
Figure 6. Axial temperature at mid-height of medium A  for 

1 =  
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Figure 7. Axial temperature at mid-height of medium A  for 

2 =  

 
 

 
Figure 8. Axial temperature at mid-height of medium B  for 

0.5 =  
 

 

 
Figure 9. Axial temperature at mid-height of medium B  for 

1 =  

 

 
Figure 10. Axial temperature at mid-height of medium B  for 

2 =  

 



 250 

The Figures [11-19] summarize the axial and 
radial temperature profiles by the steady state 
isotherms within the two mediums according to study 
parameters. For each figure, we have simultaneously 

the domains associated to the A  and B  mediums 

separated by the interface characterized by 
a

b
 = . For 

all the figures we note isothermal symmetry according 
to boundary conditions. Isotherms thermal levels are 
higher in the middle of lateral surface, subjected to a 
sinusoidal density flux. Two intermediates cases are 

present 1zz

rr

k

k
=  (the mediums became isotropic), and 

1 =  (The mediums have the same radial 

conductivities). For simultaneously 1zz

rr

k

k
=  and 1 = , 

the two mediums are reduced to a single one. Apart 
from these intermediates configurations, isothermal 

profile has two aspects. For low value of 0.25zz

rr

k

k
=

corresponding to weak mediums axial conductivities, 
isotherms are parallel to cylinder sections except in the 
center, where the shape of the isotherms translates the 
heat sinusoidal flux applied to the outer surface. The 

increase of radial conductivities ratio  , that is to say 

increasing radial conductivity of medium A , reduce 
thermal level of temperature inside the two medium 
and make the isothermal profiles less tight. For high 

medium axial conductivities 4zz

rr

k

k
= , thermal level of 

the isotherms is higher than before. The isotherms are 

practically circular inside medium B  and penetrate 

advantage inside the second medium A , while being 
more and more spaced. Effect of radial conductivities 

ratio   is not changed. 
 
 
 

 

Figure 11. Isotherms for 0.5 = and 0.25zz
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Figure 12. Isotherms for 0.5 = and 1zz
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Figure 13. Isotherms for 0.5 = and 4zz
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Figure 14. Isotherms for 1 = and 0.25zz
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Figure 15. Isotherms for 1 = and 1zz
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Figure 16. Isotherms for 1 = and 4zz
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Figure 17. Isotherms for 2 = and 0.25zz
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Figure 18. Isotherms for 2 = and 1zz
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Figure 19. Isotherms for 2 = and 4zz
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6. Conclusion 
The work carried out relates to the analytical 

determination of the temperature field in two-
dimensional steady-state orthotropic mediums. The 
cylindrical geometry is such that the lateral surface is 
subjected to a flux density while the sections are 
isothermal. The results show that ratio of the main 
thermal conductivities for each medium and the ratio of 
the radial thermal conductivities of the two mediums 
affect considerably the isotherms profiles as well the 
mediums thermal level. Low temperature values 
correspond to an axial thermal conductivity greater 
than that of the radial one, or to a radial internal 
medium conductivity higher than that of the external 
medium. 
 
NOMENCLATURE 

        a  : Radius of the inner cylinder [m] 

 b  : Radius of the outer cylinder [m] 

A  : Inner orthotropic medium 

B  : Outer orthotropic medium 

G  : Form factor 

0I
 

: Bessel functions of the first kind of order 0 

1I  
: Bessel functions of the first kind of order 1 

0K  : Bessel functions of the second kind of order 0 

1K  : Bessel functions of the second kind of order 1 

rrk  : Thermal conductivity in the r direction [W/m.K] 

zzk  : Thermal conductivity in the z direction [W/m.K] 

L  : Cylinder length [m] 

 r  : Dimensional radial axis [m] 

R  : Dimensionless radial axis 

T  : Dimensional temperature [K] 

0T
 

: Temperature at cylinder sections [K] 

z  : Dimensional axial axis [m] 

Z  : Dimensionless axial axis 

  : Radial thermal conductivity ratio (
A

rr

B

rr

k

k
 = ) 

  : Ratio of inner radius to outer radius (
a

b
 = ) 

         : Dimensionless temperature 
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