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Abstract - Solving the Boundary Layer Equations is a 
challenge, even more so for complex geometries. This 
requires resolution of the drag-inducing layer immediately 
adjacent to the solid surface, which is numerically and 
computationally intensive. Finite Difference schemes, though 
accurate, are better suited for rectilinear grids. The present 
work applies a unique approximation to solve the Boundary 
Layer Equations over a curved airfoil, approximating the 
geometry by linear splines, and sequentially applying the 
inclined flat plate solution over each section. The lift 
coefficient thus obtained for a NACA 0005 airfoil is compared 
with established values, for different angles of attack. 
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1. Introduction 

Design and development of airfoils have always 
been a critical operation for the aviation industry. 
Aerodynamic analysis for airfoils, before the 1940s, 
was limited to 2D analytical methods using conformal 
transformations about a cylinder [1]. The earliest 
numerical methods are Finite Difference Schemes, 
pioneered by Richardson [2], and other potential flow 
based techniques. Naturally, the solutions obtained 
and the allowed complexity of the geometries to be 
optimised depended heavily on the computing power 
available. In parallel, the airfoils used in practice were 
of growing complexity and constantly evolved. In the 
1930s, the National Advisory Committee for 
Aeronautics conducted studies on ’families’ of foils 

and created the four-digit and five-digit series. Airfoil 
design finally moved from a manual, iterative 
procedure to mathematically precise analytical 
methods around the same time. NACA has since 
released multiple series of foils, each with its 
characteristics. This study was further developed by 
Jacobs, who based the development of various 
profiles using pressure distribution arising from the 
boundary layer enveloping the foil. This kind of 
precision is fairly ubiquitous today, indicating the 
importance of the developing boundary layers [3].  

First studied by Prandtl, Blasius and von 
Karmann [4], boundary layers indicate the region 
through which viscous effects are to be modelled. 
They were first solved analytically, and then 
numerically by the 1950s. The methods employed 
today rarely use the quintessential difference 
schemes, and eschew them in favour of more robust 
methods that can work with complex geometries 
faster. An important class of methods are the Panel 
methods, first outlined by Hess and Smith, 1967 [5]. 
These methods incorporate curved geometries using 
panels over the surface more easily than difference 
schemes and are often faster. These methods have 
been extensively studied and developed over the 
years, growing in complexity, often using multi-order 
methods. As a tangent, this work considers a novel 
extension to the prototypical flat plate solution to 
solve for the steady-state boundary layer of a 
symmetric NACA airfoil. The curved geometry of the 
airfoil is approximated as a series of inclined flat 
plates. Then, the boundary layer of each such plate is 
solved sequentially, where the velocity profile at the 
trailing edge of one plate is repurposed into the initial 
velocities for the next plate. The resulting velocity 
profiles give us the developed boundary layer. 
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The rest of the paper is organised as follows. The 
following sections detail the flat plate boundary layer 
and then follow into the inclined flat plate problem. 
The latter is then extended to curved geometries, 
which we test on symmetric four-digit airfoils. The 
approximate solutions for the velocity fields are then 
used to compute the coefficient of lift, which is used to 
verify that the method does indeed model the 
boundary layer over the foil. 

 
2. Theory 

The problem we have set out to solve is as 
follows: Given an understanding of the simple steady-
state flat plate boundary layer solution originally 
solved by Prandtl et al., is it possible to extend the 
solution to curved geometries in a way that does not 
rely on complicated machinery i.e. on formulations 
beyond the flat plate solution? We pursue this 
solution over symmetric NACA airfoil geometries and 
test its range of validity. With the benefit of hindsight, 
we reply in the affirmative - there is such a method. 
However, there are some caveats. While it is possible 
to define and test such a method, some limitations 
beset it. This means that beyond a certain limit or 
curvature in the geometry of the foil, the solution 
becomes quite inaccurate and we must responsibly 
defer to more robust formulations. 

This section develops the flat plate boundary 
layer solution to solve the inclined flat plate problem. 
This solution is then used to construct the new 
method, which is used to solve the boundary layer 
flow over curved geometries. 
 
2.1. Background 

This section introduces the notation and the 
required background for them.  

The velocity field u(x,y) is a vector field, with 
x-component u(x,y) and vertical component v(x,y). 
Note that the vector field is always indicated with a 
boldface character, and that both components are 
functions of x and y. The aim is to solve for this field in 
the forthcoming sections.  

In that regard, we use a finite difference 
scheme developed in [6], and the notation is as 
follows. In a Cartesian coordinate system, we use the 
x and y axes as usual, and the velocity at each node is 
denoted by capital letters. Specifically, the finite 
difference method calls needs a discretised domain, 
which we do  by demarcating points along the x-axis 

spaced Δx apart, and Δy apart on the y-axis. The 
resulting grid that we form will be the basis for our 
finite difference scheme, and we index each node by 
(i,j).  That is, node (i,j) corresponds to the coordinate 
point (iΔx ,jΔy), and it is easily seen that this can cover 
the domain. 

The velocity field is then solved for at each 
node, instead of the entire, continuous domain. This is 
the crux of the finite element method, and we use the 
following notation. U(i,j) denotes the horizontal 
component of velocity, u(x,y), at the (i,j) node, i.e.   
U(i,j)= u(iΔx ,jΔy). Similarly, V(i,j) denotes the vertical 
component of velocity, v(x,y), at the (i,j) node i.e. V(i,j)= 
v(iΔx ,jΔy).  

The physical constants used in the governing 
equations are introduced with the corresponding 
equations for brevity. 
  
2.2. Boundary layer equations 

The governing equations for this flow are derived 
from the Navier-Stokes equations, which are as 
follows.   

              
𝜕𝑢

𝜕𝑡
+ 𝑢. 𝛻𝑢 =

𝛥𝑃

𝜌
+ 𝑣𝛻2𝑢                  (1)  

where u is the x-component of the velocity field u, and 
v is the y-component. We will always indicate the 
vector velocity field as a boldfaced u. Further note 
that these are with respect to the global coordinate 
axes. When solving over each region, these will be 
resolved along appropriately inclined axes, and the 
meaning will be clear from context. Lastly, ν is the 
kinematic viscosity of the fluid; in this case, air.  We 
can now simplify Eq. 1 as follows: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

−1

𝜌

𝜕𝑃

𝜕𝑥
+ 𝑣

𝜕2𝑢

𝜕𝑦2     

         ⇒ 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑣

𝜕2𝑢

𝜕𝑦2                            (2)                                    

subject to the following boundary conditions 
 

𝐴𝑡 𝑦 = 0, 𝑥 > 0; 𝑢 = 𝑣 = 0 

𝐴𝑡 𝑦, 𝑥; 𝑢 = 𝑈 

𝐴𝑡 𝑥 = 0; 𝑢 = 𝑈                                           (3) 
 

We also specify mass conservation 
throughout as follows. 

       𝛻. 𝑢 = 0 ⇒ 𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                         (4) 
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2.3. Boundary Layer over a Flat Plate 

Consider a horizontal stream with velocity 𝑈∞ 
incident on a flat plate of negligible thickness as 
shown. Naturally, we are subject to the no-slip 
condition at the bottom of the plate, and we assume 
that we reach the free-stream velocity 𝑈∞beyond the 
layer. These are essentially the conditions outlined in 
Eq. 3. 

Now, we can say that the problem is well-posed. 
We can now begin discretizing Eq. 2. With help from 
[6], we use the following derivative approximations: 

 
𝜕𝑢

𝜕𝑥
=

𝑈(𝑖+1,𝑗) − 𝑈(𝑖,𝑗)

∆𝑥
 

𝜕𝑢

𝜕𝑦
=

𝑈(𝑖,𝑗+1) − 𝑈(𝑖,𝑗)

∆𝑦
 

       And, 
𝜕2𝑢

𝜕𝑦2 =
𝑈(𝑖,𝑗+1)−2𝑈(𝑖,𝑗)+𝑈(𝑖,𝑗−1)

(∆𝑦)2
                                                                                                                                                  

                                                                                 (5) 
 
Recall, 𝑈𝑖,𝑗denotes the steady flow velocity 

component at the (i,j)th node. Following the literature 
in Finite Difference Methods, each node represents a 
point in the domain where the velocity field is 
resolved. Naturally, 𝑈𝑖+1,𝑗 refers to the node i.e. the 

succeeding node along the (local) x-axis, and 
𝑈𝑖,𝑗+1refers to the node i.e. the succeeding node along 

the (local) y-axis. Note that because we deal with 
curved geometries, ∆𝑥 and ∆𝑦, the node spacings 

along the 𝑥 and 𝑦 axes vary according to the curved 
geometry.  In accordance with the literature in Finite 
Difference Methods, each node represents a point in 

the domain where the velocity field is resolved. When 
Eq. 5 is substituted in Eq. 2, we get 

 

𝑈(𝑖,𝑗)

𝑈(𝑖+1,𝑗) − 𝑈(𝑖,𝑗)

∆𝑥
+ 𝑉(𝑖,𝑗)

𝑈(𝑖,𝑗+1) − 𝑈(𝑖,𝑗)

∆𝑦
 

= 𝑣
𝑈(𝑖,𝑗+1)−2𝑈(𝑖,𝑗)+𝑈(𝑖,𝑗−1)

(∆𝑦)2
                 (6) 

 
We can now rearrange this to form an equation in  

𝑈(𝑖,𝑗), 𝑈(𝑖+1,𝑗)and 𝑈(𝑖,𝑗+1)as follows. 

 
 

(
−𝑣

(∆𝑦)2
−

𝑉(𝑖,𝑗)

2∆𝑥
)𝑈(𝑖,𝑗−1) + (

2𝑣

(∆𝑦)2
+

𝑈(𝑖,𝑗)

∆𝑥
)𝑈(𝑖,𝑗) 

 

+(
−𝑣

(∆𝑦)2
−

𝑉(𝑖,𝑗)

2∆𝑥
)𝑈(𝑖,𝑗+1) =

𝑈(𝑖,𝑗)
2

2∆𝑥
                   (7) 

 
However, at the boundaries, we must modify our 
equation, which is then of the form 

 

(
−𝑣

(∆𝑦)2
−

𝑉(𝑖,𝑗)

2∆𝑥
)𝑈(𝑖,𝑗+1) + (

2𝑣

(∆𝑦)2
+

𝑈(𝑖,𝑗)

∆𝑥
)𝑈(𝑖,𝑗) 

= (
−𝑣

(∆𝑦)2
−

𝑉(𝑖,𝑗)

2∆𝑥
)𝑈(𝑖+1,𝑗−1) 

                (8) 
near the plate, and 

 

 (
−𝑣

(∆𝑦)2
−

𝑉(𝑖,𝑗)

2∆𝑥
)𝑈(𝑖,𝑗−1) + (

2𝑣

(∆𝑦)2
+

𝑈(𝑖,𝑗)

∆𝑥
)𝑈(𝑖,𝑗) 

 

(
−𝑣

(∆𝑦)2
−

𝑉(𝑖,𝑗)

2∆𝑥
)𝑈(𝑖+1,𝑗+1)                  (9) 

 
near the edge of the domain. Now, we see that this 
method is implicit and thus can be resolved into a 
tridiagonal system to fully resolve the velocities at the 
jth layer. Because this is an implicit method, it is 
unconditionally stable; this allows us to have 
arbitrary levels of discretisation in the numerical 
analysis.  

We depict one such solution for the flat plate 
in Figure 1, for laminar flow using the conditions as 
applicable from Sec.2.3. Please note that here, we 
follow the surface of the plate, even if it coincides 
with the Cartesian x-axis. We will define our x-axes in 
the next sections along the curve as well. 
 

Figure 1. Boundary layer over a flat plate. The x-
axis is defined to be the surface of the plate, and the y-axis 

is the height from it in which the layer develops 

https://www.codecogs.com/eqnedit.php?latex=U_/infty%250
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2.4. Boundary layer over a symmetric airfoil 

Any airfoil is characterised by curved 
geometry, which is not easily amenable to an FD 
method. Past methods have tried to use meshed 
irregular grids i.e. grids with step size that varies with 
geometry or even tried to remove the mesh entirely 
[4]. The latter is done via the random generation of 
nodes and using neighbouring nodes to compute the 
velocity. In any case, the fact remains that this 
difficulty in moving to complex geometries is one of 
the reasons for introducing more robust methods. 

A key observation is that these methods 
depart significantly from the otherwise simple 
analysis outlined above. As engineers are wont to do, 
our method to compute the velocity field builds on 
the flat plate solution. We use linear splines to 
approximate the curved airfoil boundary as a series of 
flat plates, and then solve the flat plate problem over 
each region. The only added complexity is with the 
change in slope of each section, i.e. we now have to 
solve an inclined flat plate boundary flow problem. 

Solving an inclined flat plate presents only 
one difficulty over the normal problem. The incoming 
velocity field, though horizontal, will have to be 
resolved along the plate. Let us suppose that the 
velocity fields are essentially thus:  initially. 

Furthermore, let the slope of the plate be 𝜃. Then, 
denoting [U’,V’] as the components as resolved on the 
plate, we can easily see that 
 

[
𝑈′

𝑉′] = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] . [
𝑈∞

0
]                (10) 

 
Note that this only resolves the velocities at the 

first plate i.e. at the leading edge. There are more 
spline interpolations along the curve. Fortunately, Eq. 
10 generalises easily to 

 [
𝑈𝑖

𝑉𝑖
] = [

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] . [
𝑈𝑖−1

𝑉𝑖−1
]            (11) 

 
where 𝑈𝑖  denotes the incoming velocity profile at the 

ith plate and so on, and 𝜃 is the difference in the slopes 
between the ith and (i-1)th plates. With these 
modifications, we can repeatedly use the flat plate 
solution as outlined in Section 2.2. 
 
 
 
 

 

Figure 2. The linear spline approximation, used for foils of 
5%,10% and 15% thicknesses with no camber. 

 
Figure 2 shows linear spline interpolations of 

airfoils with multiple thicknesses and zero camber, of 
which the 5% thickness profile was used to test this 
method. To reiterate, each segment of the spline will 
be treated as an inclined flat plate and solved thus. 
The velocity profiles at the ends of each 
plate/segment are stored as the velocities of the fluid 
along the foil. It is easily seen then, that a larger 
number of splines would result in a better 
approximation of the velocity profile. 

We study the case when 𝑈∞ = 50𝑚 𝑠⁄ , and 

𝑉 = 0𝑚 𝑠⁄ , i.e. a horizontal flow over a symmetric 
NACA 0005 foil. The fluid is assumed to be air, which 

gives us 𝜈 = 1 × 10−5 𝑚2 𝑠⁄  approximately. Further 
note that the foil is assumed to be smooth i.e. we 
neglect the wall-shear component in the following 
calculations. 
 
2.5. Calculating the Lift Coefficient 

Calculating the coefficient of lift, Cl gives us an 
important verification of the method developed here. 
Briefly, it is the ratio of the lift force generated by the 

foil to
1

2
𝜌𝑉2𝐴, where 𝜌 is the density of the fluid (here, 

air), V is the velocity of the wing and  A is the frontal 
area of the wing. The latter can be thought of as the 
area exposed to the incoming velocity.  

The coefficient of lift has to be calculated 
using the velocity profiles over each individual plate. 
Note that the coefficient of lift is calculated as follows. 
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To find the lift force 𝐿, note that for an individual 

segment of length 𝛥𝑙,  
 

  ∆𝐿 = ∆𝑃. 𝐴 =
1

2
𝜌(𝑉𝑢

2 − 𝑉𝑙
2)(𝑏. 𝑑𝑙𝑖)            (12) 

 

where 𝑉𝑢 denotes the boundary layer velocity when 

developed over the upper segment of the foil, 𝑉𝑙is the 

same velocity developed on the lower segment, and 𝑏 
is the depth of the plate. ΔP indicates the differential 
pressure across the length of the foil. For simplicity, 
we ignore any fringe effects. Now, we can sum over all 
the plates to get the total lift force for the foil 
  

𝐿 = ∑ ∆𝐿𝑖𝑖 =
1

2
𝜌∑ (𝑉𝑢,𝑖

2 − 𝑉𝑙,𝑖
2)(𝑏. 𝑑𝑙𝑖)𝑖          (13) 

 

Therefore, we can use the definition of Cl as follows.   
 

𝐶𝑙 =

1

2
𝜌 ∑ (𝑉𝑢,𝑖

2 − 𝑉𝑙,𝑖
2)(𝑏. 𝑑𝑙𝑖)𝑖

∑
1

2
𝜌(𝑏. 𝑑𝑙𝑖)𝑈∞

2
=

∑ (𝑉𝑢,𝑖
2 − 𝑉𝑙,𝑖

2). 𝑑𝑙𝑖𝑖

∑𝑑𝑙𝑖𝑈∞
2  

𝐶𝑙 ≤
∑ (𝑉𝑢,𝑖

2 − 𝑉𝑙,𝑖
2 ). ∑ 𝑑𝑙𝑖𝑖𝑖

∑𝑑𝑙𝑖𝑈∞
2  

𝐶𝑙 ≤
∑ (𝑉𝑢,𝑖

2 −𝑉𝑙,𝑖
2)𝑖

𝑈∞
2                    (14) 

 

Finally, assuming the mean velocities 𝑉𝑙 and 𝑉𝑢, we 
get 

                            𝐶𝑙 ≤ 𝑛(Vu2 - Vl2)/ 𝑈∞
2                         (15) 

 

where ∀𝑖 ∈ [𝑛], and for some 𝑛 ∈ 𝑁. Using the 
approximation detailed above, we obtain the 
computed values of 𝐶𝑙as shown in Table 1. Their close 
agreement allows us to see that the method 
developed does indeed model the foil accurately. The 
theoretical values are derived from Eq. 16 from Thin 
Airfoil theory.  

 
                                       𝐶𝑙 = 2𝜋𝛼                           (16) 

 

where 𝛼 is the angle of attack, and 𝐶𝑙 is the lift 
coefficient. 

The authors, however, recommend that Eq. 15 
only be used when a rough estimate is required. The 
equality in Eq. 14 yields calculations of the lift 
coefficient that conform to the theoretical values; this, 
we suspect, may be because the inequality is not tight. 
 
 

3. Results 
Using this solution, accuracy is compared with 

traditional Thin Airfoil Theory and the characteristics 
of the obtained velocity field.  

The obtained velocity field for the conditions 
described at the end of Section 2.4. is shown in Figure 
3. It is important to note the graph precisely, 
however. The x-axis follows the curve of the foil, and 
this means that two points shown at the same height 
on the graph are in fact at the same height from their 
corresponding points on the foil, but not in the sense 
of an orthogonal Cartesian coordinate system 
measured from the nose of the foil. Having presented 
this way, we can easily see the developing boundary 
layer as if we were following a flat plate. Visually, we 
can see that the boundary layer does not separate, 
which is to be expected for the laminar flow we have 
considered. This serves as the first verification of our 
framework.  

The other confirmation comes from the 
computation of the coefficient of lift (CL) for different 

values of angles of attack (𝛼) and comparing it with 
the predicted values from Thin Airfoil Theory. To 
obtain the coefficient of lift from the velocity field, we 
proceed in a two-part computation. 

Consider the foil as made up of two halves, 
each made up of the surfaces of the top and bottom of 
the foil respectively. Since we consider the symmetric 
NACA 0005 airfoil, we do not need to account for 
different geometry in each step. Now, the crucial part 

is to account for the angle of attack (𝛼), which we do 
as follows. Prior to resolving the flow along any of the 
individual plates, we angle the flow according to ɑ. 

That is, [𝑈0, 𝑉0]
𝑇 = 𝑅(−𝛼)[𝑈∞, 0]𝑇  , where 𝑅(−𝛼) 

is the rotation matrix as described in Eq. 11 for an 

angle of −𝛼. Note, however, that for a positive angle 
of attack, we incline the flow in the opposite sense. 
This is, in effect, giving us the scenario when the foil is 

inclined by +𝛼. Then, we calculate the velocity field 
as shown in Sections 2.3 and 2.4, and find the 
boundary layer velocity for the upper half, Vu. 

We repeat this procedure for the lower half of 
the foil, noting that the geometry does not change for 

symmetric foils. We incline the initial flow to +𝛼, as 

opposed to (−𝛼) in the previous part. This allows us 
to simulate the flow as if the foil was inclined away 
from it. We proceed similarly as before and calculate 
the boundary layer velocity for the lower half, VL. 

https://www.codecogs.com/eqnedit.php?latex=C_l%250
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An approximate upper-bound calculation is 
used to find the lift coefficient, 𝐶𝑙 , from Vu and VL, as 
detailed in Section 2.5. The accuracy of the method 
can be now easily determined by a computation of the 
total lift force that the foil creates, as listed in Table 1. 
As Table 1 shows, the close agreement with the 
calculated and predicted values serves as the final 
verification of our framework. 
 
4. Conclusion 

The inclined flat plate boundary layer solution 
is sequentially applied, piecewise, to approximate the 
flow-field over a curved airfoil. The lift coefficient is 
obtained from the flow-field so calculated, and values 
obtained closely match well established results. The 
deviation, however, increases at higher angles of 
attack, owing to inherent simplifications in the 
method. Furthering the work done so far, the authors 
propose to quantify approximation errors, which can 
then be used to extend the method to more complex 
geometries such as cambered airfoils, and at larger 
angles of attack.   

 
Table 1. Approximate upper bound of lift coefficient vs 

actual lift coefficient in a NACA 0005 Airfoil with various 
angles of attack. 

Angle of 

attack (α) 

Approx. 
Coefficient of Lift 

(C′l) 

Theoretical 
Coefficient of Lift 

(Cl) 

2° 0.24 0.219 

4° 0.43 0.438 
6° 0.67 0.657 
8° 0.76 0.87 
10° 0.80 0.6 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Plotting the resultant velocity field to observe the 

developing boundary layer. i.e. Velocity field �⃗� (𝑥, 𝑦)over 
the domain.  
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