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Abstract – An efficient methodology to simulate non-reactive 
and reactive flows is presented. Combining a finite-volume 
approach on fully staggered meshes along with the artificial 
compressibility method, the resulting code proves to be versatile 
enough to cope with flow configurations ranging from unsteady 
cylinder wakes, heated cylinder or steady and unsteady diffusion 
flames with excellent accuracy, in the limits of the underlying 
physical modelling. 
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1. Introduction 
The artificial compressibility (AC) method is quite 

a well-established numerical approach for solving the 
constant-density incompressible Navier-Stokes 
equations. Originally introduced by Chorin [1] for steady 
flows simulations, this method consists in that case in 
modifying the continuity equation by adding a non-
stationary pressure term, namely: 

 

�̂�−1𝜕�̂��̂� = −𝛻 ⋅ �̂� (1) 

where �̂� is a an artificial e.g. non-physical time and �̂� is 
the artificial compressibility factor which scales as a 
velocity square. In the following and unless stated 
otherwise, any quantity �̂� is dimensional whereas its 
dimensionless counterpart is written as 𝛷.  

The results are physically meaningful only when a 
steady-state solution in 𝜏 is reached so that the original 
continuity equation is recovered [2]. The ongoing 
popularity and relative success of the artificial 
compressibility method to deal with constant density 
flow simulations are mainly due to its simplicity and 
clear physical interpretation. To obtain a time-accurate 
solution, a dual time-step technique can be employed [3, 
4, 5, 6]. Accordingly, in addition to the aforementioned 
modification of the continuity equation, the physical 
time derivative of the velocity field is introduced in the 
momentum equation, namely (dimensionless form): 

 
𝜕𝑡𝒖 + 𝜕𝜏𝒖 = −𝛻 ⋅ (𝒖𝒖) − 𝛻𝑝 + 𝑅𝑒−1𝛻2𝒖 (2) 

 
where 𝑡 is the physical time, 𝑅𝑒 the Reynolds number, 𝜕𝑡 
and 𝜕𝜏 are the physical and artificial-time derivatives, 
respectively. These equations are iteratively solved such 
that the velocity field approaches its new value in 
physical time as its divergence is driven towards zero. 
Thus, for each physical time step, the flow field has to go 
through one complete sub-iteration cycle in artificial-
time. 
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The existence of the artificial-waves propagation 
phenomenon associated with the convergence towards 
the physically meaningful solution of the above set of 
equations can be evidenced by writing the momentum 
equation under a characteristics-like form (neglecting 
the viscous term and the physical time derivative and 
considering a one-dimensional configuration), namely: 

 
[𝜕𝜏𝑢 + (𝑢 ± 𝑐)−1𝜕𝜏𝑝] 

+(𝑢 ± 𝑐)[𝜕𝑥𝑢 + (𝑢 ± 𝑐)−1𝜕𝑥𝑝] = 0 
(3) 

 
The artificial sound speed 𝑐, and the corresponding 
artificial Mach number 𝑀, are related to 𝛽 by: 
 

𝑐 = √𝑢2 + 𝛽,   𝑀 =
𝑢

𝑐
=

𝑢

√𝑢2 + 𝛽
< 1 (4) 

 
Thus, artificial waves of finite speed are 

introduced to distribute the static pressure throughout 
the whole computational domain. The rate of 
convergence of the solution during the pseudo-time 
integration loop heavily depends on the value of 𝛽, and 
this can be thought of as a weak point of the method. 
Indeed, in order to converge to the steady-state solution 
during the course of each sub-iterations cycle in 
artificial-time, the waves associated to the hyperbolic 
nature of the artificial compressibility based system of 
equations have to undergo at least a one round-trip 
propagation to ensure the proper built-up of the pressure 
field (more precisely, of its gradient field) over the whole 
computational domain. Based on this representation, 
Chang and Kwak [6] estimated the number 𝑁 of artificial 
time-steps 𝛥𝜏 required to reach convergence in artificial 
time. By considering a characteristic length 𝐿 of the 
computational domain over which the artificial waves 
must travel once forth and back, they obtained a lower bound 
for 𝑁 expressed as: 

 

𝑁 >
√1 + 𝛽

𝛽

2𝐿

𝛥𝜏
 (5) 

 
Compared to the numerous AC based simulations 

of constant density flows that can be found in the 
literature (quite a significant number of them have been 
recently recalled by Hodges [8]), much less examples of 
AC based simulations of non-constant density flows have 
been reported or are discussed in CFD textbooks, to the 
noticeable exception of Oran and Boris [9]. In such cases 

featuring a non-constant density field (in space and/or 
in time), one can distinguish between configurations still 
featuring a divergence free velocity field (Bassi et al. [10], 
Shapiro and Drikakis [11]) from those which did not. For 
the latter, they are mostly related to the simulation of 
Mach zero reacting flows such as steady turbulent 
premixed flames (Bruel et al. [2]), unsteady turbulent 
premixed flames (Corvellec et al. [5], Dourado et al. [7]), 
laminar confined and unconfined diffusion flames (Fathi 
et al. [12], Bianchin et al. [13], Donini et al. [14]). 

Starting from the observation that the artificial 
compressibility is quite underused to simulate in 
particular reacting flows, the objective of the present 
work is to draw the attention of the CFD community on 
this valuable approach by showing how the combination 
of rather standard discretization tools in a finite volume 
framework allows to obtain an efficient and versatile 
simulation tool. In addition to the Introduction and 
Conclusion sections, the paper is organized in three main 
sections: Section 2 describes the different continuous 
systems of equations to be solved; Section 3 gives the 
main ingredients of the methods of solution whilst in 
Section 4, the results obtained for five different flow 
configurations are presented. 

 

2. The Continuous Systems of Equations 
Both inert and reacting gaseous flows are to be 

considered in the present study and the possible 
influence of the buoyancy force is accounted for. Thus, 
for each of the two classes of configurations, the modified 
(e.g. including the AC related terms) continuous system 
of equations dealt with is presented hereafter. 2D flow 
geometries are considered in this study, either in 
Cartesian or axisymmetric coordinates.  

2. 1. Inert Flows 

A Newtonian fluid is considered for which the 
modified conservation equations of mass, momentum 
and energy are given by: 

 
𝜷−𝟏𝝏𝝉𝒑 + 𝝏𝒕𝝆 + 𝜵 ⋅ 𝝆𝒖 = 𝟎 (6) 
𝝆𝝏𝝉𝒖 + 𝝆𝝏𝒕𝒖 + 𝝆𝒖 ⋅ 𝜵𝒖 
= −𝜵𝒑 + 𝑹𝒆−𝟏𝜵 ⋅ �̿� + 𝑭𝒓−𝟐(𝟏 − 𝝆)𝐞𝒚 

(7) 

𝝆𝝏𝝉𝑻 + 𝝆𝝏𝒕𝑻 + 𝝆𝒖 ⋅ 𝜵𝑻 = 𝑷𝒆−𝟏𝜵 ⋅ (𝝆𝑫𝑻𝜵𝑻) (8) 
 
Where 𝒖=(𝑢, v) designates the dimensionless velocity 

vector, �̿� = μ(∇𝒖 + ∇𝒖𝑻) −
2

3
μ (𝛻 ⋅ 𝒖)𝑰 is the viscous 

stress tensor and the power-law expressions μ = ρ𝐷𝑇 =
𝑇σ (with 𝜎 = 0.7) are employed to account for the 
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temperature dependence of the shear viscosity μ and 
thermal diffusivity 𝐷𝑇. Vector 𝐞𝑦 stands for the base 

vector aligned with the gravity acceleration vector �̂�. The 
dimensionless variables and differential operator are 

defined as: 𝛽 ≡ �̂�/(�̂�𝑟𝑒𝑓)2, 𝑡 ≡ �̂�(�̂�𝑟𝑒𝑓/�̂�𝑟𝑒𝑓), 𝜏 ≡

�̂� (�̂�𝑟𝑒𝑓/�̂�𝑟𝑒𝑓) , 𝑢 ≡ �̂�/�̂�𝑟𝑒𝑓, v ≡ v̂/�̂�𝑟𝑒𝑓, 𝜌 ≡ �̂�/�̂�𝑟𝑒𝑓 , 𝑇 ≡

�̂�/�̂�𝑟𝑒𝑓 and 𝑝 ≡ �̂�/�̂�𝑟𝑒𝑓�̂�𝑟𝑒𝑓
2 , 𝛻 = 𝐿𝑟𝑒𝑓�̂�. The reference 

quantities used to define the Reynolds number 
𝑅𝑒 ≡ �̂�𝑟𝑒𝑓�̂�𝑟𝑒𝑓/�̂�𝑟𝑒𝑓, the Froude number 𝐹𝑟 ≡ �̂�𝑟𝑒𝑓/

√�̂�𝑟𝑒𝑓 ‖�̂�‖ and the Péclet number 𝑃𝑒 ≡ �̂�𝑟𝑒𝑓 �̂�𝑟𝑒𝑓/�̂�𝑟𝑒𝑓 

(with �̂�𝑟𝑒𝑓 ≡ �̂�𝑟𝑒𝑓/�̂�𝑟𝑒𝑓, �̂�𝑟𝑒𝑓 ≡ �̂�𝑟𝑒𝑓/�̂�𝑝𝑟𝑒𝑓
�̂�𝑟𝑒𝑓 , where 

�̂�𝑟𝑒𝑓 is the reference dynamic viscosity, �̂�𝑟𝑒𝑓 the 

reference thermal diffusivity �̂�𝑟𝑒𝑓 the thermal 

conductivity and �̂�𝑝𝑟𝑒𝑓
 the reference specific heat at 

constant pressure) will be indicated later on, on a case by 
case basis. The above system is supplemented by the 
Mach zero equation of state, namely 𝜌 = 1/𝑇. When the 
flow configuration dealt with is isothermal, the energy 
equation simply reduces to 𝑇 = 𝑐𝑠𝑡𝑒. 

 
2. 2. Reacting Flows 

Two different diffusion flames in ambient 
atmosphere are simulated to illustrate the capability of 
the AC method to deal with reacting flows with a strongly 
varying density. They are both described through a simple 
thermochemical model. It assumes an infinitely fast one-
step chemical reaction i.e. 𝐹 + 𝑠 𝑂2 → (1 + 𝑠) 𝑃 (At 
stoichiometry, s mass of oxygen is consumed for each 
unit mass of fuel F resulting in 1 + 𝑠 mass of products P). 
Thus, the temperature 𝑇 and the mass fraction fields 𝑌𝑖  
(𝑖 = 𝑂2,  𝐹) are determined by two conserved scalars 
[19, 20, 21]: the mixture fraction 𝑍 ≡ 𝑆 𝑌𝐹 − 𝑌𝑂2

+ 1 and 

the excess enthalpy 𝐻 ≡ (𝑆 + 1) 𝑇/𝑄 + 𝑌𝐹 + 𝑌𝑂2
in 

which 𝑆 ≡ 𝑠�̂�𝐹𝑟𝑒𝑓/�̂�𝑂2𝑟𝑒𝑓
 and 𝑄 ≡ �̂�𝐹𝑟𝑒𝑓�̂�/�̂�𝑝𝑟𝑒𝑓

�̂�𝑟𝑒𝑓 

where �̂�𝐹𝑟𝑒𝑓
 and �̂�𝑂2𝑟𝑒𝑓

 are the reference mass fraction of 

fuel and mass fraction of oxidant, respectively, which 
supplement the reference quantities already introduced 
in the previous subsection for inert flows. 𝑄 is the heat of 
combustion. Both fuel and oxidant Lewis numbers are 
taken equal to unity. Thus, the generic system of 
governing equations that describes the evolution of the 
reacting flows at hand is given by: 

 
𝛽−1𝜕𝜏𝑝 + 𝜕𝑡𝜌 + 𝛻 ⋅ 𝜌𝒖 = 0 (9) 
𝜌𝜕𝜏𝒖 + 𝜌𝜕𝑡𝒖 + 𝜌𝒖 ⋅ 𝛻𝒖 = 
−𝛻𝑝 + 𝑅𝑒−1𝛻 ⋅ �̄̄� + 𝐹𝑟−2(1 − 𝜌)𝒆𝑦 

(10) 

𝜌𝜕𝜏𝑍 + 𝜌𝜕𝑡𝑍 + 𝜌𝒖 ⋅ 𝛻𝑍 = 𝑃𝑒−1𝛻 ⋅ (𝜌𝐷𝑇𝛻𝑍) (11) 
𝜌𝜕𝜏𝐻 + 𝜌𝜕𝑡𝐻 + 𝜌𝒖 ⋅ 𝛻𝐻 = 𝑃𝑒−1𝛻 ⋅ (𝜌𝐷𝑇𝛻𝐻) (12) 

The above system is supplemented by the Mach zero 
equation of state, namely 𝜌 = 1/𝑇. 
 
3. Method of Solution 

The numerical solution of the Mach zero system of 
equations relies on a dual-step time-accurate artificial 
compressibility method. An explicit second-order Runge-
Kutta Ralston’s method was adopted for the artificial-time 
integration and the second-order Euler method was 
selected for the physical-time integration due to its 
simplicity of implementation in a dual-time step approach. 

By replacing the derivative terms with their 
numerical approximations, the resulting set of equations 
can be written in compact form as: 

𝑑𝑞(𝑎𝑐)

𝑑𝜏
+

𝑑𝑞

𝑑𝑡
= 𝑅𝐻𝑆(𝑞)𝑖,𝑗 (13) 

 

where 𝑞 = [𝜌, 𝑢, v, 𝑇]𝑇 and 𝑞(𝑎𝑐) = [𝑝/𝛽, 𝑢, v, 𝑇]𝑇 are the 
vector of primitive variables for non reacting flows, and 

𝑞 = [𝜌, 𝑢, v, 𝑍, 𝐻]𝑇 and 𝑞(𝑎𝑐) = [𝑝/𝛽, 𝑢, v, 𝑍, 𝐻]𝑇 are those 
for reacting flows cases. 𝑅𝐻𝑆(𝑞)𝑖,𝑗 is the right-hand side of 

the discretized equation. Then, introducing the residual 
value for the artificial time step as: 
 

𝑅𝑒𝑠(𝑞𝑛+1,ν)𝑖,𝑗 = ΔΩ
−3𝑞𝑛+1,ν + 4𝑞𝑛 − 𝑞𝑛−1

2Δ𝑡
 

+𝑅𝐻𝑆(𝑞𝑛+1,ν)𝑖,𝑗 
(14) 

  
permits to rewrite Equation 13 at times’ step (𝑛 + 1, 𝜈 +
1) as: 
 

𝑑𝑞(𝑎𝑐)

𝑑𝜏
|

𝑛+1,𝜈+1

= 𝑅𝑒𝑠(𝑞𝑛+1,𝜈)𝑖,𝑗 (15) 

 
The integration steps in artificial-time are finally 

given by: 
 

𝑞(1) = α1𝑞𝑛+1,ν + ϕ1Δτ[𝑅𝑒𝑠(𝑞𝑛+1,ν)/ΔΩ] 

𝑞(2) = α2𝑞𝑛+1,ν + ϕ2[𝑞(1) + Δτ𝑅𝑒𝑠(𝑞(1))/ΔΩ] 

𝑞𝑛+1,𝜈+1 = 𝛼3𝑞𝑛+1,𝜈 + 𝜙3[𝑞(2) + Δ𝜏𝑅𝑒𝑠(𝑞(2))/ΔΩ]  
 

where (𝛼1, 𝛼2, 𝛼3) = (1,3/4,1/3), (𝜙1, 𝜙2, 𝜙3) =
(1,1/4,1/3) and 𝛥𝛺 is the cell volume. 

To advance the solution by one physical time-step, 
the equations are iteratively solved in a segregated way 
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such that 𝑞𝑛+1,𝜈+1 approaches the new value 𝑞𝑛+1 as the 
artificial time derivative approaches zero. For satisfying 
this constraint, the residual value 𝑅𝑒𝑠(𝑞)𝑖,𝑗 of Equation 15 

is set to reach values below ε = 10−5. The flow chart of the 
algorithm to solve the system is presented in Figure 1. 
   

 
Figure 1. Flow chart of the algorithm where 𝑡𝑚𝑎𝑥  is the total 

physical time evolution simulated and 𝑞 is the vector of 

variables. 

 

A finite volume framework is adopted. The 
governing equations are discretized on a staggered grid by 
a cell-vertex finite-volume formulation using the quadratic 
upstream interpolation for convective kinetics (QUICK) 
scheme to guarantee stability, sensitivity to the flow 
direction and third-order truncation error. There is no 
need to prescribe boundary conditions for the pressure, 
thanks to the recourse of the fully staggered grid, as shown 
in Figure 2. The non-uniform structured grid is refined 
(hyperbolic tangent distribution), on a case by case basis, 
in zones where high gradients are expected. 

 

 

Figure 2. Sketch of the fully staggered mesh used for the 
space discretization. 

4. Numerical Experiments 

A total of five flow configurations were simulated 
broken down into i) three inert flow configurations (two 
isothermal and one featuring a strongly space varying 
density) and ii) two reacting flow configurations (one 
steady laminar diffusion flame and one flickering 
laminar diffusion flame). 
4. 1. Inert Flows 

Three different inert flow configurations are 
considered. The first one (the oscillating plate) is a 
verification test aimed at assessing the effective accuracy 
of the method of solution. The two others are validation 
tests that demonstrate the capacity of the method to 
cope with flow featuring unsteady vortices (unsteady 
cylinder wake) or strong density variation (a heated 
cylinder placed in a square enclosure). 

 
4. 1. 1. The Oscillating Plate (Stokes’ Second 
Problem) 
 The flow motion over an infinite flat plate that 
oscillates parallel to itself is investigated. The coordinate 
system is 2D Cartesian, with 𝑥 being the coordinate along 
the plate and �̂� the coordinate normal to it. The plate 
oscillates in the �̂� = 0 plane with a velocity given by: 
 

�̂� = 0:  �̂�𝑝𝑙𝑎𝑡𝑒(0, �̂�) = �̂�𝑚𝑎𝑥𝑐𝑜𝑠(2𝜋𝑓 �̂�) (16) 

 

𝑓 designates the plate oscillation frequency and �̂� the 
time. The fluid is air and the reference kinematic 
viscosity is taken at ambient temperature e.g. �̂�𝑟𝑒𝑓 =

1.55 × 10−3𝑐𝑚2/𝑠. The maximum plate velocity is taken 
as the reference velocity e.g. �̂�𝑚𝑎𝑥 ≡ �̂�𝑟𝑒𝑓 = 2 × 10−2𝑚/

𝑠 and the reference length is chosen equal to eight times 
the depth of penetration of the viscous wave e.g. �̂�𝑟𝑒𝑓 =

8 × 6.25  × 10−3𝑚 = 5 ×  10−2𝑚. Thus, the Reynolds 
number is such that 𝑅𝑒 = 64. The fluid velocity is given 
by (Schlichting [18]): 
 

�̂�𝑓𝑙𝑢𝑖𝑑(𝑦, 𝑡) = �̂�max𝑒−�̂��̂�𝑐𝑜𝑠(2𝜋𝑓 �̂� − �̂��̂�) (17) 

 

where �̂� = √𝜋𝑓 𝑅𝑒. The global error at time level 𝑛 will 

be denoted by 𝑬𝒏 = ℚ𝒏 − 𝝃𝒏, where ℚ𝑖,𝑗  is the computed 

value at each point of the grid and 𝜉𝑖,𝑗 represents the 

exact value. 
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To quantify the error, the commonly used p-norm 
is chosen in order to estimate the error at a given 
physical time level 𝑛, namely: 
 

‖𝑬𝒏‖𝑝 = ((Δ𝑡, Δ𝑦) ∑ |𝐸𝑛
𝑖,𝑗|

𝑝

𝑖=𝑖𝑚𝑎𝑥,𝑗=𝑗𝑚𝑎𝑥

𝑖=1,𝑗=1

)

1/𝑝

 (18) 

 
Let’s assume the method has an order of accuracy 𝑠, then 

the error is expected to behave like ‖𝑬𝒏‖𝑝 =

𝐶(Δ𝑡, Δ𝑦)𝑠 + high-order-terms, as the time step or grid 
spacing are decreased and (Δ𝑡, Δ𝑦) → 0. 

Figure 3 shows the results of the time step and 
mesh refinement influence study for the Stokes' second 
problem using the p-norm with 𝑝 = 1. The exact and 
computed solutions are compared on a sequence of time 
steps and grid spacing, and the norm of the error is 
plotted as a function of Δ𝑡 and Δ𝑦. These are shown on a 
log-log scale, e.g. log‖𝑬𝒏‖1 ≈ log|𝐶| + 𝑠 log|(Δ𝑡, Δ𝑦)| so 
that a linear behaviour is expected in this plot, with the 
slope providing the effective order of accuracy 𝑠. When 
decreasing Δ𝑡, the mesh refinement is adapted in order 
to keep constant the Courant–Friedrichs–Lewy number 
at the value 𝐶𝐹𝐿𝑡 = 0.5 
 

 
Figure 3. Physical time and spatial order of accuracy by the 

log-log scale analysis using 1-norm. 

 
4. 1. 2. The Unsteady Wake of a Flow past a Circular 
Cylinder 

The incompressible unsteady laminar flow around 

a cylinder with a circular cross section of diameter �̂� ≡

�̂�𝑟𝑒𝑓 placed eccentrically in a channel of height ℎ̂ = 4.1 �̂� 

is considered (see Figure 4). The coordinate system is 2D 
Cartesian, with �̂� being the streamwise coordinate and 𝑥  
the coordinate normal to the channel walls. This 
configuration corresponds to one of those used by 
Schäfer and Turek [16] for a benchmark of different 
solution approaches for solving the incompressible 
Navier-Stokes equations. The distances between the 

cylinder centre and the bottom and top walls are 2.1 �̂� 

and 2�̂�, respectively. The Reynolds number is defined by 

𝑅𝑒 = 𝑣𝑏𝑢𝑙𝑘�̂�/�̂�𝑎𝑖𝑟, where �̂�𝑎𝑖𝑟 ≡ �̂�𝑟𝑒𝑓 is the kinematic 

viscosity and v̂𝑏𝑢𝑙𝑘 ≡ �̂�𝑟𝑒𝑓 denotes the bulk velocity. The 

case selected here corresponds to 𝑅𝑒 = 100. As 
illustrated in Figure 4, Equations 6 and 7 are integrated 
with the following boundary conditions: on the top (𝑥 =

𝑥/�̂� = −2.1) and bottom (𝑥 = 𝑥/�̂� = 2) walls and at the 
cylinder surface (𝑟2 = 𝑥2 + 𝑦2) the no-slip condition is 
imposed for velocities. At the inlet section located at (𝑦 =

�̂�/�̂� = −4), a parabolic profile is prescribed for the 
velocity streamwise component (with a maximum value 

v̂(𝑥 = ℎ̂/2) = v̂𝑚𝑎𝑥 =
3

2
v̂𝑏𝑢𝑙𝑘) and the normal 

component is set to 0. 

 

 
Figure 4. Unsteady cylinder wake: flow configuration and 

related boundary conditions. 

 
Among all the characteristics of this type of 

problem (lift, drag, and pressure coefficients), the correct 
prediction of the periodic vortex-shedding, illustrated by 
the isocontour of velocity in Figure 5c was the target 
chosen to validate the present solution approach. In 
particular, the Strouhal number is computed to measure 
the ability of the method to produce quantitatively 
accurate unsteady results. Figure 5a presents the time 
evolution of the non-dimensional normal component of 
the velocity at (𝑥, 𝑦) = (−0.5, 0.5) observed when the 
periodic regime of  shedding is established. For 𝑅𝑒 =
100, the experimentally obtained Strouhal number is 
𝑆𝑡 = 0.287 ± 0.003 [16]. The power spectrum of the 
fluctuations of the streamwise component of the 
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computed velocity is shown in Figure 5b. The 
numerically obtained Strouhal number value is St = 
0.289 which agrees well (relative error of 1.35%) with 
its experimentally obtained counterpart. For the present 
case, Figure 6 shows, for a given physical time-step, an 
evolution of the maxima of the residuals 𝑅𝑒𝑠(𝑣)𝑖,𝑗 

(Equation 15) during the artificial-time iteration cycle. 

 

 
Figure 5. Unsteady cylinder wake (Mesh size of 43 × 246): (a) 
Velocity history signal at (𝑥, 𝑦) = (−0.5,0.5), (b) Corresponding 
power spectrum of such velocity signal, and (c) Snapshot of 

the contour of the velocity norm (The marker × indicates the 
location at which the data in (a) are recorded). 

 

It can be seen that calculations for 𝛽 = 40 become 
unstable and within 40 steps starts to diverge, whereas 
other cases converge to a stable solution. For low values 
of 𝛽, it takes only 10 iterations for the solution to reach 
almost constant residual values but then, further 
iterations do not improve the solution and so the 
accuracy constraint cannot be met. The effect of the 
artificial compressibility factor 𝛽 on the number of 
artificial-time steps necessary to achieve convergence to 
the physical time step following that corresponding to 

the snapshot of Figure 5c is illustrated in Figure 7. 𝐿 is 
defined as the channel length and 𝛥𝜏 = 0.14. The 
optimum value of 𝛽𝑜𝑝𝑡 ≈ 34 is higher than the expected 

value of 𝛽𝑜𝑝𝑡 ≈ 8 reported in the literature [2, 11]. By 

using Equation 5, the dashed line in Figure 7 represents 
the number of minimum time-steps to achieve 
convergence of the artificial-time integration for each 
value of 𝛽. Considering the convergence criteria of 
𝑅𝑒𝑠(𝑣)𝑚𝑎𝑥 < 𝜀, it is possible to see a good agreement 
between the computation iterations and the iterations 
described by Equation 5 until 𝛽𝑜𝑝𝑡. 

 
Figure 6. Unsteady cylinder wake (Mesh size of 43 × 246): (a) 

Convergence history as a function of the dimensionless 
artificial compressibility factor 𝛽. 

 

 
Figure 7. Unsteady cylinder wake (Mesh size of 43 × 246): 

influence of the dimensionless artificial compressibility factor 
𝛽 on the number of time steps required to obtain an artificial-

time converged solution. Comparison with the lower bound 
proposed by Chang and Kwak [6]. 
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For  𝛽 > 𝛽𝑜𝑝𝑡, the convergence rate begins to 

degrade gradually until 𝛽 ≈ 38, above which 
convergence is lost. 

4. 1. 3. A Square Enclosure with a Heated Circular 
Cylinder 

The configuration is 2D Cartesian. It consists of a 
cooled square enclosure kept at a constant temperature 
�̂�𝑐 , with sides of length �̂�, within which a heated circular 
cylinder at constant temperature �̂�ℎ, with a radius �̂�(=
0.2�̂�), is located in the center of the enclosure. This 
configuration was studied by Kim et al. [22] to examine 
the natural convection phenomena by changing the 
location of the circular cylinder. The case selected here 
corresponds to 𝐹𝑟 = 0.2, 𝑅𝑒 = 6.7 and 𝑃𝑒 = 4.9 so that 
the Rayleigh number defined as 𝑅𝑎 = (𝑔𝛥�̂��̂�3)/(�̂��̂�) 

with 𝛥�̂� = 2(�̂�ℎ − �̂�𝑐)/(�̂�ℎ + �̂�𝑐)  is such that 𝑅𝑎 = 103, 
leading to reference values �̂�𝑟𝑒𝑓 = �̂� = 1.4 × 10−2𝑚 and 

�̂�𝑟𝑒𝑓 = 7.49 × 10−2𝑚/𝑠. The hot cylinder and cold wall 

temperatures are such that �̂�ℎ = 1200𝐾 and �̂�𝑐 = 300𝐾, 
respectively.  

Once the velocity and temperature fields are 
obtained, the local Nusselt number 𝑁𝑢 and the surface-

averaged Nusselt number 𝑁𝑢 are defined as: 
 

𝑁𝑢 =
𝜕𝜃

𝜕𝑛
|

𝑤𝑎𝑙𝑙
and 𝑁𝑢 =

1

𝐾
∫ 𝑁𝑢

𝐾

0

 𝑑𝑆 (19) 

 
Where 𝜃 = (�̂� − �̂�𝑐)/(�̂�ℎ − �̂�𝑐), 𝑛 is the normal direction 

with respect to the walls and 𝐾 is the wall surface area 
 over which the integration is performed. 

The Nusselt numbers results presented by Kim et 
al. [22] were used to evaluate the efficacy of the present 
solution approach. Figure 8 present the predicted flow 
topology streamlines. This topology highlights the 
buoyant induced flow, caused by the upward motion of 
the hot fluid that moves along the surface of the heated 
cylinder. The hot fluid then encounters the cold top wall 
becoming gradually colder and denser while it moves 
horizontally outward of the vertical center line. At this 
stage, the fluid is cold enough to descend along the cold 
side walls closing the recirculation zone. Figure 9 
displays the distribution of the local Nusselt number 
along half of the wall of the enclosure. Because the 
problem presented symmetry about the vertical center 
line at 𝑥 = 0, only the right half of the enclosure is 

considered (see Figure 9) for calculating 𝑁𝑢𝑇 . The 

present simulation yields a value 𝑁𝑢𝑇 = 1.73 which is 
within 3.59 %. of that reported by Kim et al. [22] e.g. 

𝑁𝑢𝑇 = 1.67. 
 

 
Figure 8. Heated cylinder in a square enclosure (Grid 

resolution of 101 × 101): Streamlines patterns. 

 

 
Figure 9. Heated cylinder in a square enclosure: Local Nusselt 
number distribution along the walls of the enclosure (Present 

results obtained with a grid resolution of 101 × 101). 
Comparison with the numerical results of Kim et al. [22] 

obtained with a grid resolution of 201 × 201. 
 

4.2. Reacting Flows 
4.2.1 Tsuji Burner Flame 

This configuration is concerned with the flame 
stabilization over a porous cylindrical burner with radius 
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�̂� ≡ �̂�𝑟𝑒𝑓 inside a channel. The geometry is 2D Cartesian. 

As shown in Figure 10, the gaseous fuel is injected from 
the forward half part of the burner with velocity �̂�𝑏 ≡
�̂�𝑟𝑒𝑓 into the incoming airflow of velocity �̂�𝑎𝑖𝑟.  
 

 
 

Figure 10. Tsuji diffusion flame: flow configuration and 
boundary conditions. 

 

This configuration reproduces the experimental 
set-up of the Tsuji Burner, where the rear side of the 
burner surface was coated to avoid the ejection of fuel 
into the wake region [17]. In such a configuration 
characterized by a low incoming flow velocity, an 
envelope steady flame is found. The flame is described by 
the set of Equations 9-12 where the other reference 
quantities are chosen as �̂�𝐹𝑟𝑒𝑓 ≡ �̂�𝐹𝑏

, �̂�𝑂2𝑟𝑒𝑓
≡ �̂�𝑂2∞

, 

�̂�𝑝𝑟𝑒𝑓
≡ �̂�𝑝∞

, �̂�𝑟𝑒𝑓 ≡ �̂�∞ and �̂�𝑟𝑒𝑓 ≡ �̂�∞ where the index 𝑏 

and ∞ denote quantities taken at the burner exit and in 
the ambient atmosphere, respectively. 

Equations 9 to 12 are integrated with the following 
boundary conditions: On the symmetry axis (𝑥 = 0), 
𝜕𝑥𝑢 = 𝜕𝑥v = 𝜕𝑥𝑍 = 𝜕𝑥𝐻 = 0; at the burner boundary 
surface (𝑟2|+ = 𝑥2 + 𝑦2 = 1+), 𝑢 − 𝑥 = v − 𝑦 = 0, 𝑍𝑠 −
𝑃𝑒−1𝜕𝑛𝑍 = 𝑆𝑍, 𝐻𝑠 − 𝑃𝑒−1𝜕𝑛𝐻 = 𝑆𝐻 (Robin’s like 
boundary type for 𝑍 and 𝐻 ) where 𝑍𝑠 ≡ 𝑆 𝑌𝐹𝑠

− 1, 𝐻𝑠 ≡

(𝑆 + 1) 𝑇𝑠/𝑄 + 𝑌𝐹𝑠
 and the subscript 𝑛 stands for the 

normal to the burner surface. The terms 𝑆𝑍 and 𝑆𝐻 are 
the 𝑍 and 𝐻 fluxes which are imposed at the burner 
injection surface 𝑟2|− = 𝑥2 + 𝑦2 = 1− as function of �̂�𝐹𝑏

, 

�̂�𝑏 and �̂�𝑏, namely 𝑆𝑍 ≡ 𝑆 + 1 and 𝑆𝐻 ≡ (𝑆 + 1) 𝑇𝑏/𝑄 +

1. Note that 𝑌𝐹𝑠
 and 𝑇𝑠 are found as part of the solution of 

the problem and this holds only in the forward part of 
the cylinder. The boundary conditions at the inlet (𝑦 =
−7.5) are v = 1, 𝑢 = 𝑍 = 0 and 𝐻 = (𝑆 + 1) 𝑇∞/𝑄 + 𝑌𝑂. 
At the outlet (𝑦 = 13), they are 𝜕𝑦𝑢 = 𝜕𝑦v = 𝜕𝑦𝑍 =

𝜕𝑦𝐻 = 0 and at the channel wall (𝑥 = 4), they read 

𝑢 = v = 𝜕𝑥𝑍 = 𝜕𝑥𝐻 = 0. According to the definition of 
the mixture fraction function 𝑍, the flame position 
(𝑥𝑓 , 𝑦𝑓) is given by the isoline 𝑍(𝑥, 𝑦) = 1 where the 

flame temperature 𝑇𝑓 is determined by 𝐻(𝑥𝑓 , 𝑦𝑓) = (𝑆 +

1) 𝑇𝑓/𝑄. The steady diffusion flame results are 

presented in Figure 11 for different values of fuel-
ejection rate −𝑓𝑤 and �̂�𝑎𝑖𝑟, in which −𝑓𝑤 = (�̂�𝑏/
�̂�𝑎𝑖𝑟)(𝑅𝑒/2)0.5. This figure depicts the temperature 
profile along the axis of symmetry at the forward part of 
the cylinder. Figure 11a compares the predictions 
obtained in this study to the numerical finite-rate 
chemistry and experimental results of Tsa and Chen [23] 
and Dreier et al. [24], respectively. 

 

 

 

Figure 11. Tsuji diffusion flame (Mesh size of 82 × 446): 
(a) Temperature distribution through the flame front of a 

Tsuji burner with 𝑅𝑒 = 38, 𝐹𝑟 = 2.6, �̂� = 0.02𝑚, �̂�𝑎𝑖𝑟 =
1.15𝑚/𝑠, and −𝑓𝑤 = 0.318 and (b) streamlines and flame 

shape with 𝑅𝑒 = 18, 𝐹𝑟 = 1.95, �̂� = 0.015𝑚, �̂�𝑎𝑖𝑟 = 0.75 𝑚/𝑠, 
and −𝑓𝑤 = 0.5. The continuous line and its corresponding 

circles are the numerical result of the current study, the 
dashed line and its corresponding squares are the numerical 
results of [23], and the dash-dot line and its corresponding 

triangles are the experimental measurements of [24]. 

 

The presented infinite-rate combustion model 
reproduces the data reported in both numerical and 

Symmetry 

condition 
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experimental studies, except in a small, but important, 
region around the maximum temperature. The profiles 
show that, for this study, the maximum temperature is 
approximately 2200 K (adiabatic flame temperature for 
methane) with a sharp temperature profile, while it is 
about 1900 K in the experimental study with a rounded 
distribution. This is due to the limitation of infinite-rate 
chemistry to describe the coexistence of reactants in the 
reaction layer that is approximated as a flame-sheet, i.e., 
the reactants must reach the flame in stoichiometric 
proportions. Figure 11b directly compares the flame-
sheet obtained in this study with the flame boundary 
computed from fuel reaction-rate contours by Tsa and 
Chen [23], represented as the dashed-line. The flame-
sheet shape obtained (solid-line) is similar to that given 
by the reaction-rate contours of the finite-rate 
computation, except in the wake distant from the 
cylindrical burner, at which the recirculation zone is 
affected by the thermal expansion. 

 

4.2.2 A Flickering Diffusion Flame 

The unconfined flickering jet diffusion flame case 
was chosen to validate the full implementation of the 
present numerical code. The geometry of this case is 2D 
axisymmetric. As shown in Figure 12, the burner is 
composed by a fuel jet with a radius �̂�𝑟𝑒𝑓 ≡ �̂�𝐹 = 1.3 ×

10−2𝑚 surrounded by a annular air stream with radius 
�̂�𝑎𝑖𝑟 = 13 × 10−2𝑚. The fuel is methane diluted by 50%, 
�̂�𝐹𝑟𝑒𝑓 ≡ �̂�𝐹𝑏

=  0.5. The fuel and air burner inlet 

velocities are v̂𝐹 = 10 × 10−2𝑚/𝑠 and v̂𝑟𝑒𝑓 ≡  v̂𝑎𝑖𝑟 =

15 × 10−2𝑚/𝑠, respectively. The resulted Reynolds 
number, Péclet number and Froude number for this case 
are 𝑅𝑒 = 122, 𝑃𝑒 = 86, and 𝐹𝑟 = 0.42. Also, the Figure 
12 shows the following boundary conditions: on the top 
(𝑦 = �̂�/�̂� = 40) and right (𝑥 = 𝑥/�̂� = 10) boundaries, 
free-slip condition is imposed for velocities along with 
zero fluxes for the temperature, mixture fraction and 
excess enthalpy. At the inlet section located at (𝑦 =
�̂�/�̂� = 0), the velocity streamwise component is 
prescribed for fuel and air, i.e. v(𝑥 ≤ 1) = v̂𝐹/v̂𝑟𝑒𝑓 =

0.66 and v(𝑥 > 1) = v̂𝑎𝑖𝑟/v̂𝑟𝑒𝑓 = 1, respectively. The 

mesh dependency tests showed no significant 
differences in the large-scale flame features, such as 
flicker frequency and points of fuel pocket detachment. 
The Courant–Friedrichs–Lewy condition was the base 
reference for the choice of the numerical parameters. For 
the present case, the CFL numbers for the physical and 
artificial-time integration, were chosen as 𝐶𝐹𝐿𝑡 = 0.27 
and 𝐶𝐹𝐿𝜏 = 0.2, respectively. Another key parameter of 

choice was the ability of the physical time-step to 
describe sufficiently well one cycle of flame flickering. 

 

 
Figure 12. Flickering diffusion flame: flow configuration and 

boundary conditions. 

 
The resulting times steps were Δ�̂� = 4.3 × 10−3𝑠 

and Δ�̂� = 3.9 × 10−4𝑠, for physical and artificial times, 
respectively. The value of β =  8 led to a suitable 
convergence rate for this set of time steps. The case 
introduced above reproduces the computations done by 
Davis et al. [28] who also used the flame sheet model, 
unit Lewis number hypothesis, and validated their 
results against the experimental data by Chen et al. [26]. 
One strong motivation behind the choice of this case was 
to assess the ability of the present code to describe the 
temporal behavior and the formation of vortical 
structures due to large density gradients and buoyancy 
effects. The low frequencies of flame oscillations (flame 
flickering) were in the range 5 𝐻𝑧 − 15 𝐻𝑧 and 
independent of the fuel type, the geometry of the source 
of fuel and the flow field in the wake [25]. The coupling 
within the flow field between the accelerations around 
the flame and decelerations in the plume above it due to 
the buoyant force dramatically impacts the temperature 
and species field dynamics and is at the origin of the 
formation of large vortices outside of the flame. As a 
vortex ascends along the flame in direction of the tip, it 
is forced against the flame. Close to the flame tip, the 
vortex strangles the flame, a bottleneck appears 
featuring a large strain rate which leads to the local 
extinction of the flame ending up in the separation of 
part of the flame tip (fuel pockets) which is carried away 
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by the flow [26].The frequency analysis of this behaviour 
of the flickering jet diffusion flame is shown in Figure 13.  

 

 
 

Figure 13. Flickering diffusion flame (Mesh size of 41 × 101): 
(a) Mixture Fraction history at (�̂�, �̂�) = (1.3 × 10−2𝑚, 10−1𝑚), 

(b) power spectrum for the flame fluctuation. 

 
The mixture fraction history was chosen to 

represent the flame fluctuations at (𝑥, �̂�) = (1.3 ×
10−2𝑚, 10−1𝑚), as shown in Figure 13a. The dashed line 
represents the stoichiometric value, thus, when the 
continuous line crosses this line, it means that the 
detachment of a hot pocket of fuel occurred. The power 
spectrum derived from the flame fluctuations are 
presented in Figure 13b. The numerically computed 

predominant frequency at the probe location of 𝑓 =
𝑆𝑡/�̂�𝑟𝑒𝑓 = 8.4𝐻𝑧 agrees well (relative error of 5.5%) 

with the value predicted by the correlation 𝑓 − 𝐹𝑟, 𝑓 =
�̂�𝑟𝑒𝑓0.29𝐹𝑟−1 = 7.96𝐻𝑧, suggested by Sato et al. [27]. 

Since the large-scale instability is produced mainly by 
buoyancy, its frequency is an increasing function of the 
buoyancy strength as observed when plotting the 
Strouhal number as a function of the Froude number. 
The weaker secondary frequency peak visible in Figure 
13b probably results from the preceding flame bulge 
interaction with the trailing one and is categorized here 
as a sub-harmonic. The flame evolution between �̂� =
1.3𝑠 and �̂� = 1.52𝑠 is illustrated by Figure 14 which 
displays the temperatures isocontours and vorticity 
contours where the dimensional vorticity is defined by: 
 

�̂� =
𝜕v̂

𝜕�̂�
−

𝜕�̂�

𝜕�̂�
 (20) 

 

 

 
Figure 14. (a) �̂� = 1.3𝑠, (b) �̂� = 1.35𝑠, (c) �̂� = 1.39𝑠, (d) �̂� =

1.43𝑠, (e) �̂� = 1.47𝑠, (f) �̂� = 1.52𝑠. The red isoline represents 
the flame sheet (𝑍 = 1) and the blue × marker represents the 

location of the probe from Figure 13a. 
 

Flame Probe 
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The bluish regions indicate the clockwise vortex 
structures and the reddish regions the counter clockwise 
vortex ones. The flame bulge is prominent by the 
isocontour of temperature. Meanwhile, the red isoline 
represents the flame sheet and evidences the 
detachment of fuel pockets. As previously described, 
these pockets are regions of hot gas enclosed by a flame 
that travels upward. The effective entrainment of 
oxidizer in the region of the axis of symmetry is found to 
be the main mechanism of the flame local extinction and 
release of this secondary flame. Detached fuel pockets 
can be observed in Figures 14c and 14f. Also, the Figure 
14 displays the probe location where the data from 
Figure 13 were acquired. This location was chosen for 
illustrating the passage of the large vortical structure 
formed by the buoyant effect, a key feature for the 
correct flame flickering frequency analysis. Beyond the 
correct prediction of the flickering frequency, the 
unsteady flame structure appeared to be in line with the 
results presented in the literature (not shown here). 
 
5. Conclusions 

This work investigates the implementation of the 
unsteady artificial compressibility approach to simulate 
non-reacting and reacting flow fields in a zero Mach 
number framework. The resulting time-accurate scheme 
was tested in five different situations cases: the Stokes’ 
second problem, the unsteady wake flow past a circular 
cylinder, the flow around a heated cylinder placed in a 
square enclosure, a steady Tsuji diffusion flame, and a 
flickering buoyant diffusion flame. The flow over the 
oscillating plate and past a circular cylinder case were 
chosen to put into evidence the basic properties of the 
implemented time-accurate approach, such as the ability 
to describe unsteady non-reactive flows and its 
convergence rate. An analysis of the influence of the 
artificial compressibility factor on the convergence rate 
was carried out. As expected, the results showed that the 
stability of the numerical code is highly dependent on the 
value of the artificial compressibility factor and the 
computed number of time-steps required to reach 
convergence in artificial-time agreed very well with the 
expression presented by Chang and Kwak [6]. For the 
flow in the enclosure hosting a heated cylinder, a 
configuration that featured quite high density gradients, 
the predicted flow topology as well as the heat flux 
distribution along the enclosure walls matched very well 
those reported in the literature. Then, a comparison with 
experimental and numerical results was performed for a 
steady diffusion flame case. The simulated temperature 

profile and the flame shape were in good agreement with 
those reported in the literature, except in the region 
around the maximum temperature, where the reaction 
layer was not so well described, certainly because of the 
infinite-rate chemistry assumption considered here. The 
fifth case investigated the capability of the present 
approach to predict correctly the large scale 
unsteadiness of a flickering diffusion flame. An excellent 
agreement with the experimental results was observed 
in term of the fundamental frequency of the flame 
flickering. Qualitatively speaking, the predicted flame 
topology appeared to be in line with that observed 
experimentally. 
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Nomenclature 
 

Accent Marks 
�̂� dimensional quantity 
𝛷 dimensionless quantity 
  
Latin Symbols 
�̂�𝑝 specific heat at constant pressure (𝐽𝑘𝑔−1𝐾−1) 
𝑐 dimensionless artificial sound speed  

𝐶𝐹𝐿 Courant–Friedrichs–Lewy number 

�̂� diameter (𝑚) 

𝐷𝑇 dimensionless thermal diffusivity  
𝐞 base vector 
E global error 

𝑓 frequency (𝐻𝑧) 

𝑓𝑤 dimensionless fuel-ejection rate 
𝐹 fuel 
𝐹𝑟 Froude number  
�̂� gravity acceleration vector (𝑚𝑠−2) 

ℎ̂ height (𝑚) 

𝐻 dimensionless excess enthalpy  
𝐾 dimensionless wall surface area 
�̂� thermal conductivity (𝑊𝑚−1𝐾−1) 
𝐿 dimensionless length 
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M artificial Mach number 

𝑁𝑢 averaged Nusselt number 
𝑁𝑢 local Nusselt number 
𝑂 oxidant 
�̂� pressure (𝑃𝑎) 
𝑃𝑒 Péclet number  
�̂� heat of combustion (𝐽𝑘𝑔−1) 
𝑞 vector of dimensionless primitive variables 
�̂� radius (𝑚) 
Re Reynolds number 
𝑆 dimensionless thermochemical parameter 

𝑆𝑡 Strouhal number 
�̂�           physical time (𝑠) 

�̂� temperature (𝐾) 

𝒖 dimensionless velocity vector 
�̂� velocity vector (𝑚𝑠−1) 
𝑥 dimensionless distance in the x-direction 
𝑦 dimensionless distance in the y-direction 
𝑌𝑖 mass fraction 
𝑍 dimensionless mixture fraction 

  
Greek Symbols 
�̂� thermal diffusivity (𝑚2𝑠) 

𝛽 dimensionless artificial compressibility factor 

�̂� artificial compressibility factor (𝑚𝑠−2) 

𝜀 value of convergence criteria 

𝜃 dimensionless temperature 

μ̂ dynamic viscosity (𝑘𝑔𝑚−1𝑠−1) 
�̂� kinematic viscosity (𝑚2𝑠−1) 
�̂� density (𝑘𝑔 𝑚−3) 
𝜎 power-law exponent 
�̂� artificial time (𝑠) 
�̿� dimensionless viscous stress tensor 
�̂� Vorticity (𝑠−1) 
Ω dimensionless grid cell volume 

  
Subscripts 

∞ ambient atmosphere 

𝑏 burner 

𝑐 cold 
𝐹 fuel 

𝑓 flame 

ℎ hot 

𝑚𝑎𝑥 maximum value 

𝑛 normal direction 

𝑜𝑝𝑡 optimum value 
𝑂2 oxygen 
𝑟𝑒𝑓 reference quantity 

  
Superscripts 
(ac) variables in AC system 
𝑛 physical time step 
𝜈  artificial time step 

  
Abbreviations 
AC artificial compressibility 
CFD computational fluid dynamics 
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