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Abstract – This paper investigates the hydrodynamics of gas-
liquid two-phase flow in an axisymmetric microchannel with a 
circular cross-sectional area. ANSYS Fluent was employed to 
simulate Taylor flow using the Volume of Fluid model to predict 
the interfacial phenomena between the two phases. Film 
thickness, bubble curvature, pressure drop, bubble/slug lengths 
are determined to investigate gas-liquid Taylor flow in micro 
capillaries. The results show that the liquid film thickness 
remains almost constant, but the length of the flat film region 
increases as the air bubble proceeds downstream. The 
predictions are validated with theoretical and experimental 
data in the literature, which show a good agreement. 
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1. Introduction 

Micro-structured mechanical systems are 
increasingly emerging in compact industrial 
applications. A microchannel has been designed to 
minimize pressure drop and maximize transport 
phenomena in numerous energy-related microfluidic 
purposes, such as heat exchangers, fuel cells, and 
microreactors. A typical gas-liquid two-phase flow refers 
to a mixture of two distinct phases and the phases are 
separated by interfacial lines. Such flows remain in the 
laminar flow regime due to predominant viscous and 
surface tension forces in them, which simplifies the 
numerical simulations by omitting the need for 
turbulence modelling. 

The patterns of gas-liquid two-phase flows in 
microchannels are highly dependent on the transport 
phenomena, the type of channels, the phase’s superficial 
velocities, and the fluid properties, such as density, 
viscosity, and surface tension. Considering the 
remarkably low-velocity flow and very small-diameter 
channels, the gravitational and inertia forces are 
insignificant compared to surface tension and viscous 
forces. Various flow patterns, such as bubbly, Taylor, 
churn, annular, stratified, and wavy have been reported 
by investigators, e.g., [1]-[11]. An informative way to 
describe the patterns of multiphase flows is to map the 
flow pattern on an x-y graph, where the axes could be 
volumetric flow rate ratios, phase superficial velocities, 
and non-dimensional numbers such as Reynolds (Re), 
capillary (Ca), and Weber (We) [12]-[15]. Slug patterns 
occupies a large region in these maps. Consequently, 
accurate predictions of the gas bubble formation, 
growth, and propagation in microchannels are required, 
and calculations of some predominant flow parameters 
including void fraction, pressure drop, and liquid film 
thickness are taken into account. 

In Taylor flow, the void fraction is defined as the 
fraction of the channel volume that is occupied by the gas 
phase. The value varies from 0 to 1 at different locations 
in the channel. The void fraction experiences 
fluctuations depending on the flow pattern, which is 
influenced by the volumetric flow rates and superficial 
velocities of phases. Therefore, the time-averaged void 
fraction is most often computed in two-phase flows. The 
most broadly used model to predict the void fraction in a 
wide variety of multiphase flows is the drift-flux model 
proposed by Zuber and Findlay [16]. In the model, the 
void fraction can be obtained as a function of the 
distribution parameter and gas volumetric flow rate, for 
a horizontal configuration, where the drift velocity is 
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zero. Based on the type of multiphase flow, the 
configuration, and the flow pattern, different 
distribution parameters have been proposed, i.e., [1] and 
[17]-[21]. By assuming a long cylindrical gas bubble in a 
tube, Howard and Walsh [22] theoretically derived a 
distribution parameter in the drift-flux void fraction 
model. The void fraction and the pressure drop of gas-
liquid flow in microchannels were measured by 
Kurimoto et al. [23]. Their data were compared to those 
provided by [24]-[26], resulting in a more reliable 
distribution parameter for predicting void fraction. 

In Taylor flows, gas bubbles always are 
surrounded by a thin layer of continuous flow. Even 
though the thickness of the liquid is thin, it significantly 
affects the pressure drop, transport phenomena, and 
bubble curvature. As illustrated in Figure 1, the bubble’s 
curvatures follow a semi-hemispherical profiles, at both 
ends (the nose and tail caps). This type of curvature is 
well demonstrated in experimental and analytical data, 
e.g., [27]-[33]. A transition region that does not obey a 
semi hemispherical meniscus links the nose or tail cap 
with a flat/steady length of liquid film thickness. 

Two other crucial parameters to characterize two-
phase flows in the capillaries are the lengths of liquid 
slugs and gas bubbles. The lengths remained constant 
through the channels in a fully developed gas-liquid flow, 
which have been taken into account by investigators, 
such as [34]-[38]. 

Table 1 presents the non-dimensional lengths of a 
stable liquid slug and gas bubble in terms of a constant 
tube diameter. The deviation in the slug lengths gathered 
in Table 1 is due to flow conditions and tube 
configurations. 

 

 
 

Figure 1. Schematic representation of different regions in a 
typical gas-liquid Taylor flow. 

Table 1. Non-dimensional lengths of liquid slug and gas 
bubble. 

Author(s) Slug Length 
(Ls.D-1) 

Bubble Length 
(Lb.D-1) 

Gupta et al., 2009 [39] 1.3 2 

Qian et al., 2019 [40] 2.13-3.25 1.54-1.97 

Qian et al., 2019 [40] 2.07-3.02 1.56-2.06 

This paper presents a numerical study of 
air/water flow in a microchannel. The gas bubble 
formation at a concentric junction is investigated to 
show how a gas bubble generates, propagates, and 
moves through the microchannel. The gas bubble profile, 
nose and tail curvatures, liquid film thickness, liquid slug 
lengths, gas bubble lengths, and steady or flat film 
thickness are predicted throughout the computational 
domain to capture interface and transport phenomena.  

As illustrated in Figure 2, airflow enters at the core 
of the inlet cross-section and the water flow enters at an 
annular cross-section around the core. Air flow is in over 
70% of the inlet diameter which means the same 
volumetric flow rates for both flows in an axisymmetric 
microchannel. A mixture of phases exits the channel at 
the outlet. 

2. Governing Equations and Mathematical Model 
An incompressible gas-liquid two-phase flow is 

assumed in a two-dimensional microchannel where each 
phase is a Newtonian fluid with constant thermophysical 
properties. The gas and liquid phases are immiscible and 
phase change does not occur within the microchannel. 
Therefore, the continuity and the momentum equations 
take on the following forms 

 

∇ ∙ u⃗ = 0                                                                                     (1) 
 

∂(ρu⃗ )

∂t
+ ∇ ∙ (ρu⃗ u⃗ ) = −∇p + ∇ ∙ [μ(∇u⃗ + (∇u⃗ )T)] 

                                        +ρg⃗ + Fsu
⃗⃗⃗⃗⃗⃗                                           (2) 

 

where μ and ρ denote the dynamic viscosity and density, 
respectively. The last term in the momentum equation 
represents the surface tension force per unit area, which 
is approximately considered as a body force surrounding 
the interface line between phases [41], 

 
Figure 2. Schematic of two-dimensional microchannel used in 

the simulations. 
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Fsu
⃗⃗⃗⃗⃗⃗ = σκδn⃗                                                                                 (3) 
 

where σ, κ, δ, and n⃗  represent the surface tension force, 
radius of curvature or surface normal (viewed from the 
gas bubble), Dirac delta function, and unit normal vector 
on the interfacial line (from the gas to liquid phases), 
respectively. 

The curvature of the interface line and normal 
vector are defined as functions of the volume fraction 
(α): 

 

κ = ∇ ∙ n⃗                                                                                      (4) 
 

n⃗ =
∇α

|∇α|
                                                                                     (5) 

 

The gravitational force (ρg⃗ ) becomes negligible 
when there are both a small-diameter microchannel and 
dominant surface tension effects, which appear in Eötvös 
number (Eo), 

 

Eo =
gD2∆ρ

σ
                                                                              (6) 

 

where D, g, and Δρ represent the microchannel diameter, 
gravitational acceleration, and difference between phase 
densities, respectively. Eo is estimated to be on the order 
of 10-2, therefore, the gravitational term is neglected in 
the momentum equation [13]. Different criteria has been 
developed to justify the dominant surface tension 
compared to the gravitational force, such as Eo ≪ (2π)2 
proposed by Brauner and Moalem-Maron [42]. 

The momentum equation solution predicts a 
shared velocity field for both phases, throughout the 
computational domain. The accuracy of the predicted 
velocities, in the vicinity of the interface, can be 
adversely affected when the difference between 
superficial velocities is significant. Due to the presence of 
two phases in the computational domain, a volume 
fraction equation can be assumed, 

 

∂α

∂t
+ u⃗ ∙ ∇α = 0                                                                        (7) 

 

The value of the volume fraction varies from 0 to 
1. In Taylor flow, where a train of the gas bubbles moves 
in a continuous liquid flow, the importance of the volume 
fraction becomes insignificant inside the gas bubbles and 
within the liquid slugs. This parameter must be taken 
into account in the vicinity of the gas-liquid interface 
region to accurately predict the interfacial effects and 
momentum transport between phases. 

To capture the gas-liquid interface in multiphase 
flows, ANSYS Fluent offers the Level Set and the Volume 
of Fluid (VoF) methods. The Level Set method assumes a 
value of zero as the level set of a smooth function at the 
interface of the two phases. The amount of the level set 
function is negative in the gas phase and positive in the 
liquid phase. The VoF method solves a single set of 
momentum equations and calculates the volume fraction 
equation of each phase within the computational 
domain. This approach can be used for steady and 
transient two-phase flows to identify the gas-liquid 
interface. A user-defined source term can be specified on 
the right side of the volume fraction equation, which 
ANSYS Fluent assumes to be zero by default. The volume-
fraction weighted average is employed to compute the 
thermophysical properties of the two phases, such as 
density and viscosity in the governing equations. If the 
volume fraction of the second phase (α2) is tracked, then 
the amount of property (φ) in each control volume in the 
two-phase flow is represented by 

 

φ = α2φ2 + (1 − α2)φ1                                                        (8) 
 

where the subscripts 1 and 2 denote each phase. One 
limitation is that the solution may not converge for 
viscosity ratios greater than 103. In an arbitrary fluid 
volume, three cases are possible: αi = 0 when the 
volume is empty of fluid ith, αi = 1 when the volume is 
full of fluid ith, and 0 < αi < 1 when the volume contains 
the interface between phases 1 and 2. 

An explicit approach is selected to discretize time 
steps by a standard finite-difference interpolation 
scheme applied to the volume fractions at the previous 
time step. In particular, ANSYS Fluent can compute the 
values of the face fluxes near the interface line by 
interpolation either using an interface reconstruction or 
a Finite Volume (FV) discretization scheme. The 
reconstruction scheme obtains the amount of flux on the 
faces whenever a cell is filled with a phase. The finite 
volume discretization approach can only be employed 
with an explicit VoF method using first-order upwind or 
second-order upwind, and QUICK algorithms. The VoF 
method calculates a time step based on the transient 
time characteristic over a control volume, which is not 
necessarily equal in other governing equations. In the 
vicinity of the interface region, the ratio of the volume of 
each cell and the sum of the outgoing flux from the faces 
of the finite volume leads to the time taken to empty a 
cell. The Courant number (Co) includes the smallest such 
time-step, 
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Co=
∆t

∆x/Ufluid
                                                                             (9) 

 

where the Δx and Ufluid represent the grid size and fluid 
velocity, respectively. In the following simulations, the 
maximum value of the Co is 0.25, and a fixed time step of 
10-6 is employed to reduce total computational time 
unless it causes an unexpected increase in the Courant 
number. To prevent divergence of the solution in such 
cases, a variable time step between 10-6 and 10-7 is 
selected, particularly at the moments of gas bubble 
breakup. 

Conversely, the implicit approach does not have 
limitations on the Courant number enabling larger grid 
sizes and time-steps compared to the explicit approach. 
However, its higher numerical diffusion in the interface 
region reduces the accuracy of predictions for interface 
curvature between phases. The explicit approach allows 
employing a Geo-Reconstruct as the volume fraction 
discretization scheme resulting in a clear and crisp 
prediction of interface curvature with no numerical 
diffusion. The Modified HRIC creates a thicker interface, 
a longer air bubble, and considerable numerical diffusion 
on the axis inside the bubble. This weakness causes 
divergence during air bubble breakup. Consequently, the 
explicit approach along with the Geo-Reconstruct 
discretization scheme are maintained for the simulations 
in this paper. 

Surface tension effects appear due to the 
interaction and attractive forces between molecules in 
the flow. Surface tension acts inward at the surface and 
is required to stay in equilibrium. The pressure gradient 
creates an outward force to balance surface tension force 
at the surface. In ANSYS Fluent, the surface tension force 
is modeled as a continuum surface force [41]. In that 
model, a wall-adhesion angle (θw) or a contact angle in 
conjunction with the surface tension force needs to be 
specified. Therefore, the surface normal vector is 
represented by 

 

n⃗ = n̂w cos θw + t̂w sin θw                                                 (10) 
 

where n̂w and t̂w are the unit vectors normal and 
tangential to the wall. The contact angle must be 
specified. Some other researchers assumed dry-out on 
walls showing no liquid film thickness and the gas 
bubbles were in direct contact with the walls, e.g., [43] 
and [44]. Conversely, significant mesh refinement near 
the walls is required to predict boundary layer 
behaviour and liquid film thickness which was employed 
by Qian and Lawal [37]. 

 
(a) 

 
(b) 

Figure 3. Prediction of the interfacial line at the introducing 
region by (a) explicit, and (b) implicit approaches. 

(air is coloured red and water is coloured blue) 

3. Problem Description 
This study is carried out to perform a systematic 

numerical simulation of two-phase flow in a two-
dimensional microchannel. The geometric parameters of 
the microchannel are depicted in Figure 2 where the 
channel diameter (D) is 0.5 mm and the channel length 
(L) is 5 mm. The entrance length of channels is 10 times 
the diameter [53], therefore, the flow is developing. The 
velocity inlet boundary condition is assumed for both 
phases. Outlet flow boundary condition is applied at the 
exit plane of the channel. The axisymmetric geometry of 
the microchannel allows the simulations to be conducted 
for only half of the actual computational domain 
resulting in lower computational time. Therefore, the 
axis boundary condition is set on the axis of the channel, 
where the normal gradients for all variables are zero. 
Finally, the typical no-slip boundary condition is 
presumed at the solid wall of the microchannel. The 
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properties of operating fluid flows are at room 
temperature of 25°C (Table 2). The superficial velocities 
of the air and water are 0.245 m.s-1 and 0.255 m.s-1, 
respectively, and the average velocities of phases is 0.5 
m.s-1. These flow conditions result in Ca, Re, and We 
values of 0.00618, 279.93, and 1.73, respectively. Air and 
water flows enter the channel uniformly when the 
channel is filled with water at an average velocity as the 
initial condition for the simulations. 

Table 2. Thermophysical properties of air and water used in 
the simulations. 

Fluid Density 
(kg.m-3) 

Dynamic Viscosity 
(kg.m-1.s-1) 

Surface Tension 
(N.m-1) 

Air 1.1845 1.849×10-5  
0.072 

Water 997.1 8.905×10-4 

4. Numerical Formulation 
To avoid a de-coupling of velocity and pressure 

variables for Scale-Resolving Simulations (SRS), a proper 
algorithm must be chosen considering a few key factors: 
geometry of the problem, properties of fluids involved, 
flow regime, and activated additional models (if any). 
The uncomplicated geometry and non-activated 
additional models for the laminar flow regime limit the 
convergence criterion by the pressure-velocity coupling. 
Semi-Implicit Method for Pressure Linked Equations-
Consistent (SIMPLEC) algorithm can be used to couple 
pressure and velocity fields in the Navier-Stokes 
equations. The SIMPLEC is designed to manipulate the 
proper corrections in the velocity equation by removing 
less significant terms (e.g., [45]-[47]). The rectangular 
computational domain, constructed from square cells, 
and the absence of distorted meshes allows the 
skewness correction to be set to 0, which significantly 
reduces the convergence difficulties in the simulations, 
[48]. The SIMPLEC algorithm computes the gradients of 
scalar flow parameters, such as pressure, density, 
volume fraction, and velocity components at the centre 
of cells using the values of the parameters at the cell 
faces. The pressure-based algorithm employs under-
relaxation factors to control the values of variables at 
every iteration. Thus, the pressure and momentum 
under-relaxation factors are set to 0.3 and 0.7, 
respectively, to improve convergence speed and solution 
stability. The scaled residuals show a slightly decreasing 
trend as the time is marching forward and remain on the 
order of 10-6 to 10-7. For time-dependent flows, ANSYS 
can discretize the generic transport equations by 

iterative and Non-Iterative Time Advancement (NITA) 
schemes. In the present study, a first order non-iterative 
time marching scheme is employed to reduce the 
computational time for each time-step. The NITA scheme 
does not require the outer iterations resulting in a 
significant reduction of computational expense ([48]-
[50]). This scheme is also beneficial for the user-defined 
quantity of sub-iterations for each individual governing 
equation, as well as the correction tolerance which are 
set to 10-7. 

Least Squares cell-based, Green-Gauss cell-based, 
and Green-Gauss node-based approaches are available 
to calculate not only the gradient interpolation of the 
flow parameters, but also secondary diffusion terms and 
the derivatives of velocity at the centre of cell faces. An 
accurate method, which provides the highest accuracy, 
and least computational expense is highly problem-
dependent ([39] and [48]). The incompressibility of the 
flow in the present study allows the Least Square to be 
selected. For pressure interpolation, the PRESTO! 
scheme is not appropriate because of its high dissipation 
rate resulting in a delay ([45] and [47]). The Body Force 
Weighted, Second-Order Upwind, and Geo-Reconstruct 
schemes are assumed for pressure, momentum, and 
volume fraction interpolations, respectively, to achieve 
high accuracy predictions with minimal computational 
expense. The second-order upwind scheme discretizes 
the convective terms using two upstream nodes to 
calculate variables at the cell faces. Its accuracy is 
second-order regarding Taylor series analysis, [48]. 
Another scheme for momentum interpolation is QUICK 
which stands for Quadratic Upstream Interpolation for 
Convective Kinematics. The QUICK discretizes the 
momentum equation and computes a higher-order value 
of convective variables at the cell faces. This is using a 
second-order central difference for diffusion terms and a 
third-order central difference for convection terms. This 
scheme is of benefit to a weighted average of second-
order upwind to interpolate scalar variables at the cell 
faces. The QUICK scheme provides more accuracy 
compared to second-order upwind for computing 
variables on structured meshes ([45] and [47]). Hence, 
the QUICK discretization scheme has been employed in 
the following simulations. In addition to an appropriate 
time step and the number of iterations for each time step, 
under relaxation factor adjustment is required to make a 
robust solver and prevent divergence. A poor-quality 
mesh can make numerical instabilities during solutions. 
Therefore, a comprehensive mesh study has been 
carried out to find an independent grid size. 
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5. Grid Independence Study 
Proper grid resolution is important in numerical 

studies to capture transport phenomena, particularly 
Taylor flow in microchannels. The film thickness is 
computed by different empirical correlations, e.g., [27], 
[29], [31], [33], [51], and [54]. The film thickness ranges 
from 9 to 13 microns, which will be used to establish the 
grid size. Most of the correlations are based on 
experimental data of air/water two-phase flows except 
[51]. The liquid film thickness is typically measured in a 
fully developed Taylor flow where the measuring 
location is far from the junction and the film thickness 
remains constant. Whereas, this study is investigating 
developing Taylor flow in the entrance region of a 
microchannel. 

Three discretization approaches can be 
considered; coarse, fine-coarse, and fine. The coarse 
approach divides the whole domain into square-shaped 
cells starting with 25×25 μm cells as the first trial. Figure 
4 represents the liquid volume fraction for a coarse-size 
mesh of 25 microns (case I) at every 1 ms to show the 
air-bubbles emerging and moving downstream. Since 
the size of cells is greater than the approximate film 
thickness, the boundary layer, liquid film, and interfacial 
near the wall cannot be properly predicted. The 
boundary layer is not realized by the simulations and 
dry-out is observed at the wall. Furthermore, the 
air/water interface becomes thick, sharp, and without a 
semi hemispherical curvature at the rear end. 

Four other refinements are investigated to 
determine an independent mesh which are presented in 
Table 3, at 9 ms. Case I is not able to capture film 
thickness and only two bubbles are generated over 9 ms. 
By halving the grid size, case II, three shorter air bubbles 
are observed, but the liquid film thickness is not properly 
predicted. Case III captures liquid film thickness 
successfully and three bullet shape air bubbles are 
generated over 9 ms, when the lengths of bubbles are 
decreased with time marching. As illustrated in Figure 5, 
for a coarse-sized mesh of 6.25 μm, at every 1 ms, further 
decreasing the grid size, predicts an approximately 
identical flow pattern. The grid refinement from case III 
to IV makes a 3.7% variation, while from case IV to V 
leads to a 1.4% variation. The flow patterns, lengths and 
quantity of slugs and plugs are not dependent on the 
mesh refinement further than case IV. Therefore, the 
following numerical predictions are conducted with the 
mesh refinement of case IV. 
 

 

 

 

 

 

 

 

 

 

Figure 4. Liquid volume fraction plots for a uniform  
coarse-sized mesh of 25 μm.  

(air is coloured red and water is coloured blue) 

A time history of air bubble formation, growing, 
necking, breaking off, and moving through the channel is 
illustrated in Figure 5 for mesh case IV. The semi 
hemispherical nose meniscus remains constant, but the 
tail meniscus is deforming from an approximate flat cap 
to semi hemispherical as the bubble moves downstream. 
The liquid film thickness is captured throughout the 
channel. The liquid film thickness involves only two  
grids and it is not sufficient to capture the boundary 
layer and transport phenomena properly. Consequently, 
mesh refinement over a thickness of 15 μm along the 
channel’s wall is required to find an adequate size of 
grids which estimates the thickness accurately and 
prevents non-physical pressure jumps across the 
interface [39]. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Liquid volume fraction plots for a uniform  
coarse-sized mesh of 6.25 μm. 

(air is coloured red and water is coloured blue) 
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Table 3. Mesh independence for core region. 

Case Mesh Size (μm) Bubble Breakup (ms) Film Thickness  (μm) Slug Length (Ls.D-1) Bubble Length (Lb.D-1) 

3rd  2nd 1st 2nd  1st 3rd  2nd 1st 
I 25 ----- 7.04 4.23 fully dry-out ----- 1.32 ----- 2.11 1.89 
II 12.5 8.84 6.08 3.74 partially dry-out 1.22 1.16 1.72  1.74 1.91 
III 8.33 8.78 6.29 3.62 10.41 1.14 1.12 1.70  1.72 1.84 
IV 6.25 8.45 6.10 3.57 10.24 1.12 1.09 1.68  1.71 1.82 
V 5 8.43 6.08 3.52 10.23 1.12  1.10 1.67 1.71 1.81 

Table 4. Mesh independence for near the wall region. 

Case Mesh Size (μm) Film Thickness (μm) Slug Length (Ls.D-1) Bubble Length (Lb.D-1) 

3rd  2nd 1st 2nd  1st 3rd  2nd 1st 
I 3 12.50 11.50 11.00 1.15 1.14 1.79 1.76 1.85 
II 2.5 10.75 11.14 10.94 1.16 1.14 1.78  1.75 1.85 
III 2.43 10.62 11.10 10.83 1.16 1.13 1.78  1.75 1.86 

In the fine-coarse approach, the presence of the 
solid walls encourages the mesh generation process to 
employ a non-uniform distribution perpendicular to the 
flow direction. Over a thickness of 15 μm along with the 
channel’s wall, 5, 6, and 7 cells are considered to enable 
the simulations of capturing boundary layer and film 
thickness successfully. The length of cells is set to a 
constant value of 6.25 μm. The fine grid sizes near the 
wall and the coarse grid in the core region of the 
microchannel allows accurate predictions of film 
thickness and also reduces the computational time. The 
corresponding total numbers of cells are 34,400, 35,200, 
and 36,000. With these meshes, a linear slope of the 
interface line between two phases at the inlet can be 
assumed to calculate the advection of each phase at the 
cell faces. The refinements have resulted in the average 
film thicknesses of 11.67, 10.94, and 10.85 μm for mesh 
sizes of 3, 2.5, and 2.43 μm, respectively (see Table 4). 
Since an insignificant change of 0.8% is predicted by 
mesh refining from 2.5 to 2.43 μm, the grid size of 2.5 μm 
is selected. This mesh refinement prevents non-physical 
pressure jump in uniform liquid film region as observed 
by Gupta et al. [39] and results in minimum false 
diffusion and truncation error ([45] and [47]). 

As illustrated in Figure 6, the interface line 
between phases occupies the entire computational 
domain as the air bubbles move downstream. It means 
that mesh refinement should be applied over the domain 
entirely with equal-sized cells in both directions. A 
square-shape mesh of 2.5 μm is utilized to determine 
possible changes in the flow pattern and the quantitative 
aspects of problem. The results show non-remarkable 
deviations and therefore, the third approach is not a  

 
Figure 6. Schematic representation of the area swept by the 

moving air bubbles through the microchannel. 

proper mesh generation approach. Therefore, a square 
coarse grid can be adopted throughout the core region 
and a refined grid near the wall of the channel for the 
modelling of gas-liquid two-phase flow.  

The computational domain is discretized into 
35,200 cells and the simulations run on a DELL 
workstation with Intel® Xeon® E5-1650 v3 @3.5 GHz 
processor. CPU cash and memory (RAM) are 15 MB and 
32 GB, respectively. The average time-marching for a 
time-step calculation is 2.87 seconds and each 
simulation takes approximately 7 hours to complete. 

Figure 7 shows a time history of volume fraction 
for a non-uniform fine-sized mesh, case II, at every 1 ms. 
A train of air bubbles (coloured red) follows a 
hydrodynamics evolution process involving emersion, 
elongation, filling, necking, breaking off, and moving. The 
bullet-like bubbles travel downstream with an 
insignificant change in the nose curvature, while the rear 
curvature experiences an undulation over one 
millisecond after breakup moment. According to Table 4, 
maximum variations of 5%, 1.7%, and 3.6% are observed 
for bubble length, slug length, and film thickness, 
respectively. 
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Figure 7. Liquid volume fraction plots for a non-uniform  
fine-sized mesh, case II. 

(air is coloured red and water is coloured blue) 

6. Results and Discussion 

A developing Taylor flow causes some ripples at 
the liquid film which are shown by the enlarged views of 
the film regions of three air bubbles in Figure 8. The 
ripples disappear as the bubble moves downstream, due 
to time marching. 

The length of the flat film region becomes longer 
(the nose and tail transition lengths become shorter) 
as the bubble travels to the outlet, as presented in 
Table 5. The variations of the lengths of transition and 
flat regions become smaller as the bubble moves. The 
semi hemispherical meniscus at the nose and rear 
parts of the bubbles can be approximately fitted by 
two spheres at the nose and tail with a radius of R1 and 
R2, respectively. As is also presented in Table 5, the 
radius of the nose curvature is less than that of the tail 
but the bullet-like profile of the second bubble 
remains almost constant. 

As illustrated in Figure 9, the highest axial 
velocity is at the centre of the bubbles along the axis of 
the microchannel. At the caps of the bubbles, the axial 
velocity component is lower and the radial velocity 

 

 

 

Figure 8. Zoomed-in views of liquid film thickness regions of 
the 3rd, 2nd, and 1st air bubbles from top to down, respectively, 

at 9 ms. 

Table 5. Predicted air bubble shapes and geometric details. 

Bubble Meniscus 
Radius 
(μm) 

Transition 
Length 
(μm) 

Flat Region  
Length 
(μm) 

R1 R2 nose tail 
1st 210 240 120 109 502 

2nd 210 240 166 158 399 

3rd 200 240 227 275 265 

 

 

 

Figure 9. Axial velocity component contour inside and outside 
of the 3rd, 2nd, and 1st air bubbles from top to down, 

respectively, at 9 ms. 
(thick solid line indicates the curvature of the bubbles) 

component is higher at the bubble’s centre increased. 
This behaviour was previously found by Gupta et al. [39] 
using vectors and discussed by Fukagata et al. [52] using 
streamlines. For developing flow, only a minimal change 
in axial velocity is predicted. A localized backflow is also 
observed at the tail transition region due to an adverse 
pressure gradient at that region which was also 
predicted by Gupta et al. [39]. 

Two homogenous and separated flow models have 
been employed by researchers to predict the frictional 
pressure drop. The first model postulates the same 
velocity for both gas and liquid phases, which implies 
that the slip ratio at the interactive boundaries is equal 
to one. This model considers two or more different 
phases as a single phase. The values of the flow 
properties are dependent on the quality, while the 
frictional pressure drop can be computed by single-
phase flow theory derived by White [53] as follows: 
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f = (
1

2

D

ρU2
) (

dp

dx
)
L

                                                               (11) 

 

where D, L, U, and x indicates the diameter of the tube, 
the length, the mean velocity (UGS + ULS), and the axial 
direction of the channel. The Hagen-Poiseuille equation 
is a physical law to compute the pressure drop of a 
Newtonian and incompressible flow through a long and 
circular tube with a constant cross-section area. The flow 
regime remained laminar due to the Reynolds number of 
the microflows, where the friction factor becomes           
f = 16/Re for round tubes and the Eq. (11) can be 
rearranged in the following way. 
 

∆p =
16

Re
(
1

2
ρU2)

4L

D
                                                             (12) 

 

In Taylor flow, the pressure drop is affected by the 
curvatures of the slugs, the slug and plug lengths, and 
steady film thickness. Figure 10, shows the pressure 
distribution on the axis of the microchannel for gas-
liquid Taylor flow and at 9 ms. A volume fraction plot has 
been affixed to this figure where the dispersed phase is 
coloured red and the continuous phase is coloured blue. 

The pressure drop over a unit cell can also be 
described by three components, which has been 
proposed by [3], [5], and [54]: 

 

∆puc = ∆pp + ∆pf + ∆pcap                                                 (13) 
 

where the last two terms in Eq. (13) represent the total 
pressure drop over the gas bubble. The pressure drop 
over the liquid plug can be calculated by Hagen-
Poiseuille Eq. (12) in fully developed flow without 
internal circulation as below: 
 

∆pp

Lp
=

32μU

D2
= 32 Ca 

σ

D2
                                                   (14) 

 

According to Eq. (14), the pressure drop over the 
liquid plug is 56,955 Pa/m where the corresponding 
value from the present numerical simulation over two 
halves of adjacent liquid plugs to the first bubble is 
60,345 Pa/m indicating an acceptable agreement with 
5% deviation. The difference becomes much more for the 
second unit cell where the flow regime is slightly further 
away from fully developed conditions. As illustrated in 
Figure 10, the pressure distributions over the steady film 
region are almost constant and ∆pf is negligible, which 
agrees with Fouilland et al. [5]. Conversely, the normal 
stress at the interface within the steady film region is no 
longer present and the Laplace pressure at the interface 

can predict the pressure difference. The pressure 
difference between inside the gas bubble and the liquid 
at the wall is σ/Rb = 301 Pa, which the corresponding 
value from the simulation for the first unit cell is so close 
with less than 2% deviation. As the pressure distribution 
at the wall, within the flat film region, shows fluctuations 
due to the interactions between the wall and interface 
(not displayed here), its mean value is computed by 
integrating over the flat region. However, the interfacial 
pressure difference in the hemispherical nose region of 
the first air bubble is of the order of 2σ/Rb = 602 Pa, 
whereas the simulations predict 513 Pa. The difference 
is due to the developing conditions and the assumption 
of non-exact hemispherical shape of the gas bubble. The 
last term in Eq. (13) can be calculated by lubrication 
theory discussed by Bretherton [27] assuming 
insignificant inertia forces and exact semi-hemispherical 
profile at both caps of the bubble. 

 

∆pcap = 7.16
(3 Ca)2/3σ

D
                                                    (15) 

 

The numerically predicted bubble cap pressure 
difference is ⁓61 Pa compared to 72 Pa predicted by Eq. 
(15). This deviation can also be attributed to the 
significant difference between the nose and the rear 
meniscus, non-exact semi hemispherical cap curvatures, 
and the inertia effects. Consequently, the pressure drop 
per a unit length is 60,700 Pa. 
 

 

Figure 10. Pressure distribution on the axis of the 
microchannel at 9 ms. 
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7. Conclusions 
In this paper, numerical predictions of air/water 

Taylor flow, for developing flow, in a microchannel with 
a circular cross-sectional area were investigated. A mesh 
independence study showed that the mesh size caused 
different interactions between two phases and the 
channel wall, i.e., dry-out, partially dry-out, and fully 
wetted to explain whether the wall was kept dry or wet. 
The new numerical predictions showed that the liquid 
film thickness of the bubbles remained almost constant, 
but the length of the flat film region increased as the air 
bubble moved downstream. The results of this paper 
provide useful new insights into gas-liquid Taylor flow. 
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Nomenclature 
Dimensionless Groups 
Ca capillary number (= μL(ULS+UGS)/σ) 
Co Courant number 
Eo Eötvös (or Bond) number 
Re Reynolds number (= ρLD(ULS+UGS)/μL) 
We Weber number (= CaRe) 
 

English Letters 
D the diameter of microchannel (μm) 
f apparent friction factor (-) 
F force (N) 
g gravity acceleration (m.s-2) 
L length (μm) 
n unit normal vector on the interface line 
p pressure (Pa) 
R the radius of meniscus, the radius of bubble (μm) 
t time (s) 
u, U velocity (m.s-1) 
x axial co-ordinate axis 
 

Greek symbols 
α void fraction (-) 
δ Dirac delta function 
θ wall-adhesion angle (degree) 
κ radius of the curvature (m-1) 
µ dynamic viscosity (kg.m-1.s-1) 
ρ density (kg.m-3) 
σ interfacial tension (N.m-1) 
φ amount of property 
 

Subscripts 
b bubble 
f film 

G gas 
GS gas superficial 
L liquid 
LS liquid superficial 
p plug, selected phase 
s slug 
su surface 
uc unit cell 
w wall 

 
References 
[1] A. Kawahara, M. Sadatomi, K. Nei and H. Matsuo, 

“Experimental study on bubble velocity, void fraction 

and pressure drop for gas-liquid two-phase flow in a 

circular microchannel,” International Journal of Heat 

and Fluid Flow, vol. 30, pp. 831–841, 2009. 

[2]  T. Cubaud and C.M. Ho, “Transport of bubbles in 

square microchannels,” Physics of Fluids, vol. 16(12), 

pp. 4575–4585, 2004. 

[3]  M.T. Kreutzer, F. Kapteijn, J.A. Moulijn, C.R. Kleijn 

and J.J. Heiszwolf, “Inertial and interfacial effects on 

pressure drop of Taylor flow in capillaries,” American 

Institute of Chemical Engineers, vol. 51(9), pp. 2428–

2440, 2005a. 

[4]  J. Yue, L. Luo, Y. Gonthier, G. Chen and Q. Yuan, 

“An experimental investigation of gas-liquid two-

phase flow in single microchannel contactors,” 

Chemical Engineering Science, vol. 63(16), pp. 

4189–4202, 2008. 

[5]  T.S. Fouilland, D.F. Fletcher and B.S. Haynes, “Film 

and slug behaviour in intermittent slug-annular 

microchannel flows,” Chemical Engineering Science, 

vol. 65(19), pp. 5344–355, 2010. 

[6]  M.N. Kashid, A. Renken and L. Kiwi-Minsker, 

“Influence of flow regime on mass transfer in 

different types of microchannels,” Industrial & 

Engineering Chemistry Research, vol. 50(11), pp. 

6906–6914, 2011. 

[7]  A. Sur and D. Liu, “Adiabatic air-water two-phase 

flow in circular microchannels,” International 

Journal of Thermal Sciences, vol. 53, pp. 18–34, 

2012. 

[8]  J.M. Bolivar and B. Nidetzky, “Multiphase 

biotransformations in microstructured reactors: 

opportunities for biocatalytic process intensification 

and smart flow processing,” Green Processing and 

Synthesis, vol. 2(6), pp. 541–559, 2013. 

[9]  A.A. Yagodnitsyna, A.V. Kovalev and A.V. Bilsky, 

“Flow patterns of immiscible liquid-liquid flow in a 

rectangular microchannel with T-junction,” Chemical 

Engineering Journal, vol. 303, pp. 547–554, 2016. 

https://aiche.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Kreutzer%2C+Michiel+T
https://aiche.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Kapteijn%2C+Freek
https://aiche.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Moulijn%2C+Jacob+A
https://aiche.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Kleijn%2C+Chris+R
https://aiche.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Heiszwolf%2C+Johan+J


 70 

[10]  R. Kong, S. Kim, S. Bajorek, K. Tien and C. Hoxie, 

“Effects of pipe size on horizontal two-phase flow: 

Flow regimes, pressure drop, two-phase flow 

parameters, and drift-flux analysis,” Experimental 

Thermal and Fluid Science, vol. 96, pp. 75–89, 2018. 

[11]  Deendarlianto, A. Rahmandhika, A. Widyatama, O. 

Dinaryanto, A. Widyaparaga and Indarto, 

“Experimental study on the hydrodynamic behavior 

of gas-liquid air-water two-phase flow near the 

transition to slug flow in horizontal pipes,” 

International Journal of Heat and Mass Transfer, vol. 

130, pp. 187–203, 2019. 

[12]  S.S. Jayawardena, V. Balakotaiah and L.C. Witte, 

“Flow Pattern Transition Maps for Microgravity 

Two-Phase Flows,” AIChE Journal, vol. 43(6), pp. 

1637–1640, 1997. 

[13]  K.A. Triplett, S.M. Ghiaasiaan, S.I. Abdel-Khalik and 

D.L. Sadowskia, “Gas-liquid two-phase flow in 

microchannels Part I: two-phase flow patterns,” 

International Journal of Multiphase Flow, vol. 25(3), 

pp. 377–394, 1999. 

[14]  P.M.-Y. Chung and M. Kawaji, “The effect of channel 

diameter on adiabatic two-phase flow characteristics 

in microchannels,” International Journal of 

Multiphase Flow, vol. 30(7–8), pp. 735–761, 2004. 

[15]  S.M. Ghiaasiaan, Two Phase Flow, “Boiling and 

Condensation in Conventional and Miniature 

Systems,” Cambridge University Press, New York, 

2014. 

[16]  N. Zuber and J.A. Findlay, “Average Volumetric 

Concentration in Two-Phase Flow Systems,” Journal 

of Heat Transfer, vol. 87(4), pp. 453–468, 1968. 

[17]  A. Kariyasaki, T. Fukano, A. Ousaka and M. Kagawa, 

“Isothermal Air-Water Two-Phase Up-and 

Downward flows in a Vertical Capillary Tube: 1st 

Report, Flow Pattern and Void Fraction,” 

Transactions of the Japan Society of Mechanical 

Engineers Series B, vol. 58(553), pp. 2684–2690, 

1992 (in Japanese). 

[18]  K. Mishima and T. Hibiki, “Some characteristics of 

air-water two-phase flow in small diameter vertical 

tubes,” International Journal of Multiphase Flow, 

vol. 22(4), pp. 703–712, 1996. 

[19]  S. Saisorn and S. Wongwises, “Flow pattern, void 

fraction and pressure drop of two-phase air-water 

flow in a horizontal circular micro-channel,” 

Experimental Thermal and Fluid Science, vol. 32(3), 

pp. 748–760, 2008. 

[20]  M. Ishii and T. Hibiki, “Thermo-Fluid Dynamics of 

Two-Phase Flow,” Springer-Verlag, New York, 

2011. 

[21]  H. Minagawa, H. Asama and T. Yasuda, “Void 

fraction and frictional pressure drop of gas-liquid slug 

flow in a microtube,” Transactions of the Japan 

Society of Mechanical Engineers Series B, vol. 

79(804), pp. 1500–1513, 2013 (in Japanese). 

[22]  J.A. Howard and P.A. Walsh, Review and extensions 

to film thickness and relative bubble drift velocity 

prediction methods in laminar Taylor or slug flows. 

International Journal of Multiphase Flow, vol. 55, pp. 

32–44, 2013. 

[23]  R. Kurimoto, K. Nakazawa, H. Minagawa and T. 

Yasuda, “Prediction models of void fraction and 

pressure drop for gas-liquid slug flow in 

microchannels,” Experimental Thermal and Fluid 

Science, vol. 88, pp. 124–133, 2017. 

[24]  K. Hayashi, R. Kurimoto and A. Tomiyama, 

“Dimensional analysis of terminal velocity of Taylor 

bubble in a vertical pipe,” Multiphase Science and 

Technology, vol. 22(3), pp. 197–210, 2010. 

[25]  K. Hayashi, R. Kurimoto and A. Tomiyama, 

“Terminal velocity of a Taylor drop in a vertical 

pipe,” International Journal of Multiphase Flow, vol. 

37(3), pp. 241–251, 2011. 

[26]  R. Kurimoto, K. Hayashi and A. Tomiyama, 

“Terminal velocities of clean and fully contaminated 

drops in vertical pipes,” International Journal of 

Multiphase Flow, vol. 49, pp. 8–23, 2013. 

[27]  F.P. Bretherton, “The motion of long bubbles in 

tubes,” Journal of Fluid Mechanics, vol. 10(2), pp. 

166–188, 1961. 

[28]  G.I. Taylor, “Deposition of a viscous fluid on the wall 

of a tube,” Journal of Fluid Mechanics, vol. 10(2), pp. 

161–165, 1961. 

[29]  L.W. Schwartz, H.M. Princen and A.D. Kiss, “On the 

motion of bubbles in capillary tubes,” Journal of 

Fluid Mechanics, vol. 172, pp. 259–275, 1986. 

[30]  S. Irandoust and B. Andersson, “Simulation of flow 

and mass transfer in Taylor flow through a capillary,” 

Computers & Chemical Engineering, vol. 13(4–5), 

pp. 519–526, 1989. 

[31]  P. Aussillous and D. Quéré, “Quick deposition of a 

fluid on the wall of a Tube,” Physics of Fluids, vol. 

12(10), pp. 2367–2371, 2000. 

[32]  H. Fujioka and J.B. Grotberg, “The steady 

propagation of a surfactant-laden liquid plug in a two 

dimensional channel,” Physics of Fluids, vol. 17, pp. 

082102, 2005. 

[33]  Y. Han and N. Shikazono, “Measurement of the liquid 

film thickness in micro tube slug flow,” International 

Journal of Heat and Fluid Flow, vol. 30(5), pp. 842–

853, 2009. 

https://aiche.onlinelibrary.wiley.com/toc/15475905/1997/43/6
https://www.sciencedirect.com/science/article/pii/S0301932298000548?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0301932298000548?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0301932298000548?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0301932298000548?via%3Dihub#!
https://www.sciencedirect.com/science/journal/03019322
https://www.sciencedirect.com/science/journal/03019322/25/3
https://www-sciencedirect-com.qe2a-proxy.mun.ca/science/journal/08941777
https://www-sciencedirect-com.qe2a-proxy.mun.ca/science/journal/08941777
https://www-sciencedirect-com.qe2a-proxy.mun.ca/science/journal/08941777/88/supp/C
https://www.sciencedirect.com/science/article/pii/0098135489850343#!
https://www.sciencedirect.com/science/article/pii/0098135489850343#!
https://www.sciencedirect.com/science/journal/00981354
https://www.sciencedirect.com/science/journal/00981354/13/4


 71 

[34]  S. Laborie, C. Cabassud, L. Durand-Bourlier and J.M. 

Lainé, “Characterisation of gas-liquid two-phase flow 

inside capillaries,” Chemical Engineering Science, 

vol. 54(23), pp. 5723–5735, 1999. 

[35]  R.R. Broekhuis, R.M. Machado and A.F. Nordquist, 

“The ejector-driven monolith loop reactor 

experiments and modelling,” Catalysis Today, vol. 

69(1–4), pp. 93–97, 2001. 

[36]  P. Garstecki, M. Fuerstman, H. Stone and G. 

Whitesides, “Formation of droplets and bubbles in a 

microfluidic T-junction-scaling and mechanism of 

break-up,” Lab on a Chip, vol. 6(3), pp. 437–446, 

2006. 

[37]  D. Qian and A. Lawal, “Numerical study on gas and 

liquid slugs for Taylor flow in a T-junction 

microchannel,” Chemical Engineering Science, vol. 

61(23), pp. 7609, 2006. 

[38]  Y. Song, F. Xin, G. Guangyong, S. Lou, C. Cao and 

J. Wang, “Uniform generation of water slugs in air 

flowing through superhydrophobic microchannels 

with T-junction,” Chemical Engineering Science, vol. 

199, pp. 439–450, 2019. 

[39]  R. Gupta, D.F. Fletcher and B.S. Haynes, “On the 

CFD modelling of Taylor flow in microchannels,” 

Chemical Engineering Science, vol. 64(12), pp. 

2941–2950, 2009. 

[40]  J.Y. Qian, M.R. Chen, Z. Wu, Z.J. Jin and B. Sunden, 

“Effects of a Dynamic Injection Flow Rate on Slug 

Generation in a Cross-Junction Square 

Microchannel,” Processes, vol. 7(10), pp. 765, 2019. 

[41]  J.U. Brackbill, D.B. Kothe and C. Zemach, “A 

continuum method for modeling surface tension,” 

Journal of Computational Physics, vol. 100(2), pp. 

335–354, 1992. 

[42]  N. Brauner and D. Moalem-Maron, “Identification of 

the range of small diameter conduits, regarding two-

phase flow pattern transition,” International 

Communications in Heat and Mass Transfer, vol. 

19(1), pp. 29–39, 1992. 

[43]  Q. He, K. Fukagata and N. Kasagi, “Numerical 

simulation of gas-liquid two-phase flow and heat 

transfer with dry-out in a micro tube,” In: 

Proceedings: Sixth International Conference on 

Multiphase Flow, Leipzig, Germany, 2007. 

[44]  V. Kumar, S. Vashisth, Y. Hoarau and K.D.P. Nigam, 

“Slug flow in curved microreactors: hydrodynamic 

study,” Chemical Engineering Science, vol. 62 (24), 

pp. 7494–7504, 2007. 

[45]  S.V. Patankar, “Numerical Heat Transfer and Fluid 

Flow,” Taylor & Francis; 1st edition, 1980. 

[46]  J.P. van Doormaal and G.D. Raithby, “Enhancement 

of SIMPLE method for predicting incompressible 

fluid flows,” Numerical Heat Transfer, vol. 7(2), pp. 

147–63, 1984. 

[47]  H.K. Versteeg and W. Malalasekera, “An 

Introduction to Computational Fluid Dynamics: the 

finite volume method,” 2nd ed., Harlow, Eng.; 

Toronto: Pearson/Prentice Hall, 2007. 

[48]  ANSYS Fluent 18.1.0 Users' Guide, SAS Inc., 2017. 

[49]  S. Armsfield and R. Street, “The Fractional-Step 

Method for the Navier-Stokes Equations on Staggered 

Grids: Accuracy of Three Variations,” Journal of 

Computational Physics, vol. 153(2), pp. 660–665, 

1999. 

[50]  J.B. Perot, “An Analysis of the Fractional Step 

Method,” Journal of Computational Physics, vol. 

108(1), pp. 51–58, 1993. 

[51]  M.T. Kreutzer, P. Du, J.J. Heiszwolf, F. Kapteijn and 

J.A. Moulijn, “Mass transfer characteristics of three–

phase monolith reactors,” Chemical Engineering 

Science, vol. 56(21–22), pp. 6015–6023, 2001. 

[52]  K. Fukagata, N. Kasagi, P. Ua-arayaporn and T. 

Himeno, “Numerical simulation of gas-liquid two-

phase flow and convective heat transfer in a micro 

tube,” International Journal of Heat and Fluid Flow, 

vol. 28(1), pp. 72–82, 2007. 

[53]  F.M. White, “Fluid Mechanics,” McGraw–Hill, 2011. 

[54]  D. Ni, F.J. Hong, P. Cheng and G. Chen, “Numerical 

study of liquid-gas and liquid-liquid Taylor flows 

using a two-phase flow model based on Arbitrary-

Lagrangian-Eulerian (ALE) Formulation,” 

International Communications in Heat and Mass 

Transfer, vol. 88, pp. 37–47, 2017. 

https://en.wikipedia.org/wiki/Suhas_Patankar
https://www.sciencedirect.com/science/journal/00092509
https://www.sciencedirect.com/science/journal/00092509

