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Abstract - There is a growing interest in numerically handling 
of the interface dynamics in multiphase flows with large density 
and viscosity ratio in several scientific and engineering 
applications. We present a parallel space-time implementation 
of a least-squares spectral element method for the 
incompressible Cahn-Hilliard and Navier-Stokes equations for 
different densities and viscosities between phases. The high-
order continuity approximation is adopted to support global 
differentiability of problems, and by using time-stepping 
procedure and the element-by-element technique the effective 
usage of memory is resolved. Numerical experiments are 
conducted in order to verify the spectral/hp least-squares 
formulation through a convergence analysis. Besides, the 
efficiency of parallel computing is investigated. As general 
example, a falling droplet under gravity is solved by our solvers 
for different density and viscosity ratios, and the positive 
feedback between velocity field and droplet shape is 
investigated.  

Keywords: Phase field method, Least-square method, 
Density ratio, Viscosity ratio, Cahn-Hilliard equation, 
Parallel computing. 

© Copyright 2016 Authors - This is an Open Access article 
published under the Creative Commons Attribution          
License terms (http://creativecommons.org/licenses/by/3.0). 
Unrestricted use, distribution, and reproduction in any medium 
are permitted, provided the original work is properly cited. 

1. Introduction
Phase field methods [1-2] have been successfully 

used to simulate the flow of two or more immiscible 
fluids including head-on droplet collision [3-4], droplet 
impact on solid surface [5-6], and dripping to jetting 

transition [7-8]. As opposed to sharp interface methods, 
the phase field approach describes the interface as a 
transition region of physical quantities with a small but 
finite thickness, and it is capable of handling complex 
topological transition naturally without ad-hoc 
procedures [9]. Of the phase field models for two 
immiscible, incompressible and density-matched fluids, 
the basic model so-called Model H [10] has been widely 
used. It is a system of coupled Cahn-Hilliard and Navier-
Stokes equations, and the thermodynamic consistency of 
this model was proven by Gurtin et al. [11]. 

There has been a growing interest in the extension 
of Model H for two fluids where the bulk densities and 
the bulk viscosities are not matched. Broadly there are 
two branches of models for such mixture, depending on 
the definition of mean velocity of two fluids. A quasi-
incompressible phase field model for binary mixtures 
based on the mass-averaged velocity was presented by 
Antanovskii [12]. Lowengrub et al. [13] extended 
Antanovskii’s model by considering the dependence of 
the chemical potential on the kinematic fluid pressure. 
However, with this definition the velocity field is non-
solenoidal, and therefore the coupling of the Cahn-
Hilliard and Navier-Stokes equations is mathematically 
much stronger, compared with Model H. For instance the 
pressure explicitly influences the chemical potential, and 
the linearization of the two equations becomes much 
more complicated. For these reasons, there are no 
discrete schemes available for the full model of 
Lowengrub, although there is a simplified version of the 
model used in numerical studies [14-15].  
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 The formulation with the volume-averaged 
velocity is an alternative to Lowengrub’s. This model is 
based on the assumption of incompressibility, and 
therefore the velocity field is divergence-free. The 
incompressibility has not only advantages with respect 
to numerical simulation, but also maintains the 
fundamental rule for diffusion, i.e., diffusive flow is 
controlled by the local compositions, not by the 
densities, imposed in the Cahn-Hilliard equation, while 
the total mass of the system is still conserved. Several 
models with the solenoidal velocity field are proposed 
with different expressions for the effects of density and 
viscosity differences (see for example [16-19]), and 
Aland et al. [20] compared these models for a benchmark 
example in terms of convergence and accuracy. In 
addition, various special discretization schemes are 
presented for these models. The advection term in the 
Cahn-Hilliard equation was discretized by an upwinding 
finite volume scheme in [16] and by the finite element 
method with Muramn and Resetarinera schemes in [17]. 
Shen et al. [18] compared the formulations with the 
gauge-Uzawa scheme and the pressure-stabilization 
scheme for large density ratios.  
 The objective of this study is to present the 
numerical scheme with the least-squares spectral 
element method to solve the incompressible Cahn-
Hilliard and Navier-Stokes system for two-phase flow 
with large density and viscosity ratio. In our previous 
works we have presented the simulations of the Cahn-
Hilliard equation and Model H using the least-squares 
method [21-22]. The use of the least-squares method has 
several advantages: (1) it converts the original non-self 
adjoint operator into a self-adjoin operator, leading to a 
symmetric positive definite discrete linear system that 
can be solved by well-established iterative solvers: (2) 
the inf-sup (or LBB) condition is naturally satisfied, so 
that equal-order elements can be used [23].   
 There are few works on two immiscible, 
incompressible fluids with the least-squares method. 
Villegas et al. [24] solved two-phase flow equation based 
on the level-set method with the least-squares method. 
Tiwari et al. [25] presented an implicit projection 
method based on the least-squares particle method to 
deal with two incompressible Navier-Stokes equations 
for two phases. More recently, Adler et al. [26] used the 
least-squares method to model Allen-Cahn-type 
equation. 
 The fourth-order Cahn-Hilliard equation can be 
split into two second-order partial differential equations 
by introducing the chemical potential as an auxiliary 

variable. In this work, the global differentiability of the 
set of these two equations and the Navier-Stokes 
equation is satisfied by approximating the solution with 
C1 Hermite polynomial functions in each element. By 
using higher order global differentiability in local 
approximations we can avoid introducing excessive 
auxiliary equations and auxiliary variables and achieve 
the improved accuracy for the same number of degrees 
of freedom compared to C0 approximation [27]. Surana 
et al. [28] showed the advantages of the higher order 
continuity approximation in the least-squares process. 
For the Cahn-Hilliard equation the use of higher order 
continuity approximation can result in significant 
improvement in the accuracy, because the solution 
rapidly varies over the interfacial region where a thinner 
interface is preferred to reproduce the correct physics. 
Discontinuities can result in oscillations in particular 
when high order polynomials are used, however, it has 
been demonstrated that the numerical diffusion can be 
completely eliminated by mesh refinement and p-
enrichment in several works [23, 29]. 
 The rest of this paper is organized as follows. In 
Section 2, we review the governing equations. The 
numerical approach is described in Section 3. 
Convergence analysis of our numerical formulation can 
be found in Section 4 and more general numerical 
examples are presented in Section 5. We draw 
conclusions in Section 6. 
 

2. Formulation of Problem 
 
2.1. Notations 
 The formulations of the phase field method 
depend on the model of Helmholtz free energy Ψ. Cahn 
et al. [30] proposed a sum of the local Helmholtz energy 
Ψ𝑙𝑜𝑐 and surface tension effects on the interface as, 
 

Ψ(𝐶, ∇𝐶) =  Ψ𝑙𝑜𝑐(𝐶) + 
1

2
𝜀2|∇𝐶|2. (1) 

 
 where 𝜀 is the interfacial parameter, and C the 
concentration, defined as the volume fraction of one 
phase, i.e., 0 < 𝐶 < 1. The local Helmholtz energy Ψ𝑙𝑜𝑐 
has the form of double-well to describe immiscible two 
phases, and in this study it is approximated as a fourth-
order polynomial for isothermal cases [31]: 
 

Ψ𝑙𝑜𝑐(𝐶) =  
1

4
𝐶2(𝐶 − 1)2. (2) 
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 The total density of the mixture ρ and the viscosity 
of the mixture μ are defined as 
 
𝜌 = 𝜌1𝐶 + 𝜌2(1 − 𝐶), (3) 
𝜇 = 𝜇1𝐶 + 𝜇2(1 − 𝐶), (4) 

 
 respectively, where 𝜌1 and 𝜌2 denote the bulk 
density values and 𝜇1 and 𝜇2 are the bulk viscosities. 
Each fluid has its own velocity field, 𝒖1 and 𝒖2, and the 
volume-averaged velocity 𝒖 is defined as 
 
𝒖 = 𝒖1𝐶 + 𝒖2(1 − 𝐶). (5) 

 
2.2. Governing equations 
 Following Ding et al. [16], we consider the 
following coupled Cahn-Hilliard and Navier-Stokes 
system for two immiscible, incompressible fluid flows 
with a given density and viscosity ratio: 
 
𝜕𝐶

𝜕𝑡
+ 𝒖 ∙ ∇𝐶 − ∇ ∙ (𝑀∇𝜔) = 0    in Ω, (6) 

𝜔 =
𝜕Ψ

𝜕𝐶
= 𝐶3 −

3

2
𝐶2 +

1

2
𝐶

− 𝜀2∇2𝐶  in Ω, 
(7) 

∇ ∙ 𝒖 = 0    in Ω, (8) 

𝜌 [
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ ∇𝒖] − ∇ ∙ [𝜇(∇𝒖 + ∇𝒖𝑇)]

+ ∇𝑃 − 𝜎𝜔∇𝐶
= 𝒇𝑒𝑥𝑡    in Ω. 

(9) 

 
 where M is the mobility, P the pressure, 𝜎 the 
interfacial tension, and Ω the domain. Here, 𝜔 is the 
chemical potential for constant temperature, which is 
the derivative of the free energy Ψ with respect to the 
configuration change, and 𝒇𝑒𝑥𝑡 is the external body force 
expressed as 𝜌𝒈, with the gravitational acceleration g. In 
Eq. 6 𝒖 ∙ ∇𝐶 is the advection term and 𝜎𝜔∇𝐶 in Eq. 9 is 
the capillary force. Eq. 6-9 are along with the following 
no-penetration and no-slip boundary conditions: 
 
𝜕𝐶

𝜕𝑛
= 0    on Γ, (10) 

𝜕𝜔

𝜕𝑛
= 0    on Γ, (11) 

𝒖 ∙ 𝒏 = 0    on Γ. (12) 
 
 where 𝒏 is the outward vector at the boundary Γ.  

In this article, the governing equations are non-
dimensionalized. The dimensionless density and 
viscosity for a liquid-vapor mixture are defined as 
 

𝜌′ =
𝜌

𝜌𝑙
= 𝐶 + 𝜆𝜌(1 − 𝐶), (13) 

𝜇′ =
𝜇

𝜇𝑙
= 𝐶 + 𝜆𝜇(1 − 𝐶). (14) 

 
 where the density ratio and viscosity ratio are 
defined as the ratios of vapor properties over the liquid 
one as, 𝜆𝜌 = 𝜌𝑣/𝜌𝑙 and 𝜆𝜇 = 𝜇𝑣/𝜇𝑙, respectively. Other 

dimensionless variables are:  
 

𝑥′ =
𝑥

𝐿0
, 𝑡′ =

𝑡

𝑡0
, 𝒖′ =

𝒖

𝑈0
, 𝑃′ =

𝑃

𝑃0
, 𝑀′ =

𝑀

𝑀0
. (15) 

 
 where L0, t0, U0, P0, and M0 are the reference length, 
time, velocity, pressure, and mobility. Dropping out the 
primes, Eq. 6-9 in dimensionless form can be written as 
 
𝜕𝐶

𝜕𝑡
+ 𝒖 ∙ ∇𝐶 −

1

𝑃𝑒
∇ ∙ (𝑀∇𝜔) = 0    in Ω, (16) 

𝜔 = 𝐶3 −
3

2
𝐶2 +

1

2
𝐶 − 𝜀2∇2𝐶  in Ω, (17) 

∇ ∙ 𝒖 = 0    in Ω, (18) 

𝜌 [
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ ∇𝒖] −

1

𝑅𝑒
∇ ∙ [𝜇(∇𝒖 + ∇𝒖𝑇)]

+ ∇𝑃 −
1

𝑅𝑒𝐶𝑎
𝜔∇𝐶

=
𝐵𝑜

𝑅𝑒𝐶𝑎
𝜌𝒈    in Ω. 

(19) 

 
 As for the dimensionless groups, Pe is the Peclet 
number, Re is the Reynolds number, Ca is the capillary 
number, and Bo is the Bond number defined as 
 

𝑃𝑒 =
𝐿0𝑈0
𝑀0

, 𝑅𝑒 =
𝜌𝑙𝑈0𝐿0
𝜇𝑙

, 𝐶𝑎 =
𝜇𝑙𝑈0
𝜎

, 𝐵𝑜

=
𝜌𝑙𝐿0

2𝑔

𝜎
. 

(20) 

 
 Note that the dimensionless numbers regarding to 
hydrodynamics are based on the liquid values to see the 
effect of liquid properties. 
 The study of the influence of mobility is out of the 
scope in this study, but two mobilities are used 
depending on the problems: 𝑀 = 1 and 𝑀 = 𝐶(1 − 𝐶). 
The first mobility is not degenerate in the pure phases, 
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but the second one is degenerate, i.e., zero mobility in the 
pure phases. Due to this difference, with the polynomial 
mobility the interface motion is determined by diffusion 
along the interface itself, i.e., surface diffusion, while the 
interface motion with the unity mobility is also 
influenced by a diffusion process in the two bulk phases 
[32]. The polynomial mobility has been introduced by 
Cahn et al. [33] from thermodynamic grounds.  
 Equilibrium of a droplet surrounded by quiescent 
vapor requires the curvature of the interface to be 
uniform. Otherwise, the pressure and the capillary forces 
at the interface are unbalanced, giving rise to a nonzero 
velocity field. The equilibrium interface profile can be 
found by minimizing Ψ𝑙𝑜𝑐 with respect to 𝐶, i.e., zero 
chemical potential. With the double-well free energy, 
expressed as Eq. 2, the equilibrium interface profile can 
be determined analytically as, 
 

𝐶0(𝑧) =
1

2
+
1

2
tanh (

𝑧

2√2𝜀
). (21) 

 
 with the z-coordinate chosen along the gradient of 
C. 
 
3. Numerical Methods 
 
3.1. Least-squares method 
 The basic idea of the least-squares method is the 
minimization of the residual functional in a least-squares 
manner. A set of partial differential equations can be 
represented as 
 
ℒ𝐔 = 𝓖    in Ω, 
ℬ𝐔 = 𝐔Γ    on Γ, 

(22) 

 
 with ℒ is a linear partial differential operator, ℬ is 
a boundary operator, U is a solution vector, and 𝓖 and 𝐔Γ 
are corresponding source terms. We assume that the 
system is well-posed and the operators ℒ and ℬ are 
continuous mappings from the solution in Hilbert space 
𝛸(Ω) onto the data in Hilbert spaces 𝑌(Ω) × 𝑌(Γ). The 
least-squares functional corresponding to Eq. 22 can be 
defined as the square of the residual as, 
 

𝒥(𝐔) ≡
1

2
‖ℒ𝐔 − 𝓖‖𝑌(Ω)

2 +
1

2
‖ℬ𝐔 − 𝐔Γ‖𝑌(Γ)

2 . (23) 

 
 The solution is calculated from the following 
minimization statement based on variational analysis: 
 

lim
𝜈→0

𝑑

𝑑𝜈
𝒥(𝐔 + 𝜈𝐕) = 0    ∀𝐕 ∈ 𝑋(Ω). (24) 

 
 Equivalently, it is possible to write the necessary 
condition as: 
 
𝒜(𝐔, 𝐕) = ℱ(𝐕)    ∀𝐕 ∈ 𝑋(Ω), (25) 

 
 with 
 
𝒜(𝐔, 𝐕) = 〈ℒ𝐔, ℒ𝐕〉𝑌(Ω) + 〈ℬ𝐔,ℬ𝐕〉𝑌(Γ), (26) 
ℱ(𝐕) = 〈𝓖, ℒ𝐕〉𝑌(Ω) + 〈𝐔Γ, ℬ𝐕〉𝑌(Γ). (27) 

 
 where 𝒜:𝑋 × 𝑋 → ℝ is a symmetric, positive 
definite bilinear form, and  ℱ: 𝑋 → ℝ is a continuous 
linear form.  
 
3.2. Spectral element discretization 
 The computational domain Ω is divided into Ne 
non-overlapped sub-domains Ω𝑒 , called spectral 
elements. The local solution 𝐔ℎ

𝑒  in each element Ω𝑒 is 
approximated as Eq. 28 by the linear combination of a set 
of continuous basis functions Φ𝑖 
 

𝐔ℎ
𝑒(𝒙, 𝑡) =∑𝐔𝑖

𝑒Φ𝑖(𝝃, 𝜂)

𝑖=0

, (28) 

 
 with (𝝃, 𝜂) = 𝒳𝑒

−1(𝒙, 𝑡) the local coordinate of 
(𝒙, 𝑡) in the parent element, the unit cube [−1,1]𝑑, with d 
= dimΩ, and  𝐔𝑖

𝑒 the coefficients in the approximation. 
The global approximation 𝐔ℎ in Ω is constructed by 
connecting the local solutions, i.e., 
 

𝐔ℎ(𝒙, 𝑡) =⋃𝐔ℎ
𝑒(𝒙, 𝑡)

𝑁𝑒

𝑒=1

. (29) 

 
 The discretization is based on a space-time 
coupled formulation with the time-stepping procedure 
suggested by Pontaza et al. [34]. The solution is 
approximated on consecutively aligned space-time 
strips domains, and a strip is composed of only one 
element in time, Ω𝒙𝑡

𝑒 = Ω𝒙
𝑒 × Ω𝑡

𝑒 = (𝑥𝑒 , 𝑥𝑒+1) × (𝑡𝑛, 𝑡𝑛+1) 
with the time step size ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛. The initial 
condition of the system is applied to the first strip, and 
for the subsequent strips, the final solution from the 
previous strip is prescribed to the next strip as the initial 
condition.  
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3.3. Iterative method for coupling and nonlinear 
terms 
 Eq. 16-19 are the coupled Cahn-Hilliard and 
Navier-Stokes equations with nonlinear terms. To 
handle the complexities of nonlinearity and coupling, 
two iterative schemes are used. The Newton 
linearization method is used to cope with nonlinear 
terms, and a relaxation method is used in decoupling of 
the equations to assure convergence and acceleration of 
the iterations.  
 Through the Newton linearization method the 
nonlinear terms in Eq. 17 and Eq. 19 can be rewritten as 
the linear forms for the two-dimensional spatial domain, 
respectively:  
 

𝐶3 −
3

2
𝐶2 = 3𝐶𝑙

2𝐶 − 3𝐶𝑙𝐶 − 2𝐶𝑙
3 +

3

2
𝐶𝑙
2, (30) 

{
 
 

 
 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= (𝑢𝑙

𝜕

𝜕𝑥
+ 𝑣𝑙

𝜕

𝜕𝑦
+
𝜕𝑢

𝜕𝑥
|
𝑙

)𝑢 +
𝜕𝑢

𝜕𝑦
|
𝑙

𝑣 − 𝑢𝑙
𝜕𝑢

𝜕𝑥
|
𝑙

− 𝑣𝑙
𝜕𝑢

𝜕𝑦
|
𝑙

,

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
=
𝜕𝑣

𝜕𝑥
|
𝑙

𝑢 + (𝑢𝑙
𝜕

𝜕𝑥
+ 𝑣𝑙

𝜕

𝜕𝑦
+
𝜕𝑣

𝜕𝑦
|
𝑙

)𝑣 − 𝑢𝑙
𝜕𝑣

𝜕𝑥
|
𝑙

− 𝑣𝑙
𝜕𝑣

𝜕𝑦
|
𝑙

.

 (31) 

 
 The terms with subscript l represent the values 
from previous iterative steps for linearization, and they 
are regarded as constants in the linear form. 
 With the linearized forms Eq. 30-31, the operators 
and solution vectors in Eq. 22 for the Cahn-Hilliard and 
Navier-Stokes equations are given in Eq. 32 and Eq. 33, 
respectively. The terms from previous decoupling step 
are denoted as subscript n. 
 

{
 
 
 
 
 

 
 
 
 
 ℒ𝐶𝐻 = [

ℒ𝐶𝐻,11 ℒ𝐶𝐻,12
ℒ𝐶𝐻,21 −1

] ,

ℒ𝐶𝐻,11 =
𝜕

𝜕𝑡
+ 𝑢𝑛

𝜕

𝜕𝑥
+ 𝑣𝑛

𝜕

𝜕𝑦
,

ℒ𝐶𝐻,12 = −
1

𝑃𝑒
[
𝜕𝑀

𝜕𝑥
|
𝑙

𝜕

𝜕𝑥
+
𝜕𝑀

𝜕𝑦
|
𝑙

𝜕

𝜕𝑦
+ 𝑀𝑙 (

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)]

ℒ𝐶𝐻,21 = 3𝐶𝑙
2 − 3𝐶𝑙 +

1

2
− 𝜀2 (

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
) ,

𝐔𝐶𝐻 = [𝐶 𝜔]𝑇 ,   𝓖𝐶𝐻 = [0 2𝐶𝑙
3 −

3

2
𝐶𝑙
2]
𝑇

,

, (32) 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

ℒ𝑁𝑆 =

[
 
 
 
 
 
 ℒ𝑁𝑆,11 𝜌𝑙

𝜕𝑢

𝜕𝑦
|
𝑙

𝜕

𝜕𝑥

𝜌𝑙
𝜕𝑣

𝜕𝑥
|
𝑙

ℒ𝑁𝑆,22
𝜕

𝜕𝑦
𝜕

𝜕𝑥

𝜕

𝜕𝑦
0
]
 
 
 
 
 
 

,

ℒ𝑁𝑆,11 = 𝜌𝑙 (
𝜕

𝜕𝑡
+ 𝑢𝑙

𝜕

𝜕𝑥
+ 𝑣𝑙

𝜕

𝜕𝑦
+
𝜕𝑢

𝜕𝑥
|
𝑙

) −
1

𝑅𝑒
{
𝜕𝜇

𝜕𝑥
|
𝑙

𝜕

𝜕𝑥
+
𝜕𝜇

𝜕𝑦
|
𝑙

𝜕

𝜕𝑦
+ 𝜇𝑙 (

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)} ,

ℒ𝑁𝑆,22 = 𝜌𝑙 (
𝜕

𝜕𝑡
+ 𝑢𝑙

𝜕

𝜕𝑥
+ 𝑣𝑙

𝜕

𝜕𝑦
+
𝜕𝑣

𝜕𝑦
|
𝑙

)−
1

𝑅𝑒
{
𝜕𝜇

𝜕𝑥
|
𝑙

𝜕

𝜕𝑥
+
𝜕𝜇

𝜕𝑦
|
𝑙

𝜕

𝜕𝑦
+ 𝜇𝑙 (

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)} ,

𝐔𝑁𝑆 = [𝑢 𝑣 𝑃]𝑇 ,   

𝓖𝐶𝐻 = [𝜌𝑙 (𝑢𝑙
𝜕𝑢

𝜕𝑥
|
𝑙
+ 𝑣𝑙

𝜕𝑢

𝜕𝑦
|
𝑙

) +
1

𝑅𝑒𝐶𝑎
𝜔𝑛
𝜕𝐶

𝜕𝑥
|
𝑛

𝜌𝑙 (𝑢𝑙
𝜕𝑣

𝜕𝑥
|
𝑙
+ 𝑣𝑙

𝜕𝑣

𝜕𝑦
|
𝑙

)+
1

𝑅𝑒𝐶𝑎
𝜔𝑛
𝜕𝐶

𝜕𝑦
|
𝑛

+
𝐵𝑜

𝑅𝑒𝐶𝑎
𝜌𝑙𝑔 0]

𝑇

.

 (33) 

 
 Both nonlinear and decoupling convergences are 
declared when the relative norm of the residual, i.e., 

‖∆ℛ‖0/‖ℛ‖0, is less than 10-6, with the residual defined 
as 
 

‖ℛ‖0
2 = ∫[ℒ𝐔ℎ − 𝓖]

2 𝑑Ω. (34) 

 
3.4. C111 approximation 
 In this work, for a two-dimensional space and time 
domain Ω𝒙𝑡

𝑒 , equal order C1 p-version hierarchical 
approximation functions, C111 approximation, are used to 
interpolate the solution 𝐔ℎ. The solution space 𝑋ℎ is 
spanned by polynomial functions of order 𝑝𝜉 , 𝑝𝜍 and 𝑝𝜂 

which are continuous and differentiable for two space 
coordinates and the time coordinate, and their first 
derivatives are continuous: 
 

𝑋ℎ(Ω𝑒) = {𝑣: 𝑣 ∈ 𝐻
2(Ω𝒙𝑡

𝑒 ): 𝑣|Ω𝒙𝑡𝑒 =

ℝ𝑝𝜉𝑝𝜍𝑝𝜂
1 (Ω̅𝒙𝑡

𝑒 )∀Ω𝒙𝑡
𝑒 ∈ Ω:ℝ𝑝𝜉𝑝𝜍𝑝𝜂

1 (Ω̅𝒙𝑡
𝑒 ) ∈

C𝑝𝜉𝑝𝜍𝑝𝜂
1 (Ω̅𝒙𝑡

𝑒 )∀(𝑥, 𝑦, 𝑡) ∈ Ω𝒙𝑡
𝑒 }. 

(35) 

 
 For constructing the three-dimensional basis 
functions, the p-version hierarchical interpolation basis 
functions and construction approach by Solin and Segeth 
[35] are used. The same basis functions and construction 
approach have been used in [36] for the solution of the 
Cahn-Hilliard equation in one-dimensional space and 
time domain. 
 The one-dimensional basis functions consist of a 
set of four vertex basis functions defined as the cubic 
Hermite polynomials. The corresponding functions in 
the reference domain [-1,1] are defined as 
 

𝜙0 =
1

2
−
3

4
𝜉 +

1

4
𝜉3, (36) 

𝜙1 =
1

4
−
1

4
𝜉 −

1

4
𝜉2 +

1

4
𝜉3, (37) 

𝜙2 =
1

2
+
3

4
𝜉 −

1

4
𝜉3, (38) 

𝜙3 = −
1

4
−
1

4
𝜉 +

1

4
𝜉2 +

1

4
𝜉3. (39) 

 
 Among these four functions, 𝜙0 and 𝜙2 contain the 
information of the value of the approximation, and 𝜙1 
and 𝜙3 contain the information of the derivative at the 
boundary of the element. These basis functions can be 
extended in a hierarchical manner for 𝑝 ≥ 4: 
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𝜙4 = √
5

128
(1 − 𝜉2)2, (40) 

𝜙5 = √
7

128
(1 − 𝜉2)2𝜉, (41) 

𝜙6 =
1

6
√
9

128
(1 − 𝜉2)2(7𝜉2 + 1), (42) 

𝜙7 =
1

2
√
11

128
(1 − 𝜉2)2(3𝜉2 − 1)𝜉, (43) 

 
 Since these shape functions vanish on the 
boundary of the element, they are called bubble 
functions.  
 The three-dimensional basis functions for the 
space and time domains are written as the tensor 
product of one-dimensional basis functions, i.e. 
𝚽(𝜉, 𝜍, 𝜂) = 𝜙(𝜉)⨂𝜙(𝜍)⨂𝜙(𝜂). To simplify the 
numerical manipulation, we can define the three-
dimensional basis functions as 
 
𝚽𝑚
𝑒 (𝜉, 𝜁, 𝜂) = 𝚽𝑖𝑗𝑘

𝑒 (𝜉, 𝜁, 𝜂), (44) 
 
 with 𝑚 = 𝑖 + 𝑗(𝑝 + 1) + 𝑘(𝑝 + 1)2 where 0 ≤
𝑖, 𝑗, 𝑘 ≤ 𝑝. Thus, we have 𝒩𝑒 = (𝑝 + 1)3 basis functions 
𝚽𝑚
𝑒 . 

 
3.5. Fully discrete model 
 The assembling of the element matrix can be 
written as 
 
𝓐𝑒

= ∫ [ℒ(𝚽0) …ℒ(𝚽𝒩ℯ−1)]
𝑇[ℒ(𝚽0) …ℒ(𝚽𝒩ℯ−1)]𝑑Ω

Ω𝑒

, 
(45) 

𝓕𝑒 = ∫ [ℒ(𝚽0) …ℒ(𝚽𝒩ℯ−1)]
𝑇𝓖𝑑Ω

Ω𝑒

. (46) 

 
 The integral expression is numerically 
approximated by the Gaussian quadrature based on the 
GLL-roots, and over-integration with larger number of 
quadrature points Q than the expansion order p is used 
to improve the convergence rate of the solution [37], 𝑄 =
𝑝 + 3. 
 We implement the conjugated gradient method 
with the Jacobi preconditioner to solve the system of 
algebraic equations, Eq. 22, in element level. 
 

𝓐𝑒𝐔𝑒 = 𝓕𝑒 . (47) 
 
 This element-by-element technique is suitable to 
solve a linear system possessing a symmetric positive 
definite matrix and well-matched with iterative 
methods, such as for linearization and the time-stepping 
procedure [38]. A Matlab code developed at our group 
has been used as a main setup. For parallelization of the 
algorithm Matlab MPI is used to allocate sub-domains to 
processors and communicate between processors. The 
governing equations in each sub-domain are solved 
separately, and the solution vectors are assembled in a 
main processor. 
 

4. Code Verification 
 
4.1. Convergence analysis based on the 
manufactured solution 
 In this section the presented least-squares spectral 
element formulation is verified with the manufactured 
solutions in terms of error indicator. The following 
manufactured solution, expressed as products of 
trigonometrical functions, is used:  
 
𝑢(𝑥, 𝑦, 𝑡) = cos(2𝜋𝑥) sin(2𝜋𝑦) cos(2𝜋𝑡), 
𝑣(𝑥, 𝑦, 𝑡) = −sin(2𝜋𝑥) cos(2𝜋𝑦) cos(2𝜋𝑡), 
𝑃(𝑥, 𝑦, 𝑡) = sin(2𝜋𝑦) cos(2𝜋𝑡), 
𝐶(𝑥, 𝑦, 𝑡) = 0.5 cos(2𝜋𝑥) cos(2𝜋𝑦) cos(2𝜋𝑡)

+ 0.5. 

(48) 

 
 The manufactured solution is not the analytic 
solution, so the residuals have to be added to the right-
hand side of the discretized equations. Initial and 
boundary conditions are given by the manufactured 
solution; Dirichlet boundary conditions for the velocity 
fields and Neumann boundary conditions for the phase 
field variables are applied. In the convergence analysis, 
L2-norm of difference between the approximated 
solution 𝐔ℎ and the manufactured solution 𝐔𝑚, i.e., 
‖𝐔ℎ − 𝐔𝑚‖0 is chosen as error indicator and it can be 
written as 
 

‖𝐔ℎ − 𝐔𝑚‖0
2 = ∫ [𝐔ℎ − 𝐔𝑚]

2𝑑Ω
Ω

. (49) 

 
 The used parameters are: 𝑀 = 1, 𝜀 = 1, 𝑃𝑒 =
100, 𝑅𝑒 = 400, 𝐶𝑎 = 1, 𝐵𝑜 = 400, 𝜆𝜌 = 0.01, and 𝜆𝜇 =

0.02. The governing equations are solved over a domain 
Ω = [−1,1]2, with ∆𝑡 = 0.1 𝑠 until 3.0 s (6 periods). The 
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time step size is determined through the Courant-
Friedrich-Lewy (CFL) condition 
 

∆𝑡 =  
𝐶𝐹𝐿 ∙ ℎ

𝑈0
 (49-1) 

 
 where the stable time step size is generated when 
CFL is around unity. A CFL spanning from 0.05 to 1.6 is 
used in this study with U0 of 0.5. 
 The errors in time for 𝑁𝑒𝑥 = 𝑁𝑒𝑦 = 4 and 𝑝 = 8 

are presented in Figure 1. Errors oscillate with the 
period of solution, and after the first period the 
oscillation amplitudes become stable. It illustrates the 
fact that the errors do not diverge, but just fluctuate 
depending on the contour of solutions. 
 

 
Figure 1. Errors in time for manufactured solution with 𝑁𝑒𝑥 =

𝑁𝑒𝑦 = 4 and 𝑝 = 8. 

 
 The p-refinement study ranging from 𝑝 = 4 to 10 
and with 𝑁𝑒𝑥 = 𝑁𝑒𝑦 = 4  and h-refinement study of 

𝑁𝑒𝑥 = 𝑁𝑒𝑦 = 2, 4, 8, 12, 16 and with 𝑝 = 4 are 

conducted, and the errors at 3.0 s are presented in Figure 
2. The L2-errors in the p-refinement study show 
exponential decay with respect to the expansion order p, 
as expected for the least-squares method. The h-
refinement study shows the expected linear convergence 
rate with slope 5, as theoretically predicted for a fixed 
order 𝑝 = 4. 
 
4.2. Performance of parallel computation 
 In this work the parallel computation using the 
element-by-element technique is implemented for a 
problem with a refined grid. The performance of the 
parallelization is measured with the manufactured 
solution example. Two parameters, the speedup ratio 𝑆𝑝 

and the parallel efficiency 𝑒𝑓 defined as Eq. 50 and Eq. 51, 

are used. The speedup ratio 𝑆𝑝 is the ratio between the 

elapsed time of one processor 𝑇1 and the elapsed time of 
np processors 𝑇𝑛𝑝, and the parallel efficiency 𝑒𝑓 is the 

speedup ratio over the number of processors np. 
 

𝑆𝑝 =
𝑇1
𝑇𝑛𝑝

, (50) 

𝑒𝑓 =
𝑆𝑝

𝑛𝑝
. (51) 

 

 

 
Figure 2. p-refinement study (top) with 𝑁𝑒𝑥 = 𝑁𝑒𝑦 = 4, and h-

refinement study (bottom) with 𝑝 = 4. 

 
 Figure 3 presents the behavior of the speedup and 
parallel efficiency with 1, 2, 4, 8, 16, 32, 48, and 64 
processors for 𝑃𝑒 = 1 and 𝑃𝑒 = 100 with 10 × 10 and 
20 × 20 elements and 4 for the expansion order. For all 
simulations 32 GB of RAM were used. For all cases the 
parallelization is less efficient as more processors are 
used because the time required for communication 
becomes more dominant. Based on these results, the 
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number of 16 processors was adopted for further 
simulations in this work. 
 

 

 
Figure 3. Speed up (top) and parallel efficiency (bottom) for 

the manufactured solution example. 

 
5. Falling Droplet 
 We model a falling droplet under gravity force in a 
vertical channel to investigate the effects of density ratio 
and viscosity ratio of the two fluids. Three parameters 
are used to show the effects quantitatively; center of 
mass 𝑦𝑐 , circularity c, and falling velocity 𝑉𝑐, which are 
defined as 
 

𝑦𝑐 =
∫ 𝑦𝑑𝒙
𝐶>0.5

∫ 1𝑑𝒙
𝐶>0.5

, (52) 

𝑐 =
𝜋𝑑𝐴
𝑃𝑑
, (53) 

𝑉𝑐 =
∫ 𝑣𝑑𝒙
𝐶>0.5

∫ 1𝑑𝒙
𝐶>0.5

, (54) 

with 𝑑𝐴 = √4𝐴𝑝/𝜋 the diameter of projected area 𝐴𝑝. 

Circularity is defined as a ratio the perimeter of 
projected-area-equivalent circle to the perimeter of 
droplet. It is assumed that the thin interface between the 
phases is spatially located at 𝐶 = 0.5.  
 The spatial domain is chosen as a vertical channel, 
Ω = [0,1] × [0,2], and the no-penetration and no-slip 
boundary conditions are applied to all boundaries. 
Initially a droplet with diameter D = 0.5 is placed at 𝒙 =
(0.5, 1.5) under zero flow field, and the initial interface 
condition follows the analytical solution, Eq. 21. To 
assure the equilibrium state numerically as well, the 
simulation runs without any external force, until L-
norm of difference of concentration in time is lower than 
10−4, i.e., max(𝐶𝑡=𝑛+1 − 𝐶𝑡=𝑛) < 10

−4, and after then the 
gravity force 𝒈 = (0,−9.8) is imposed and the 
characteristics of the falling droplet are measured.  
 We set 𝑀 = 𝐶(1 − 𝐶), 𝜀 = 0.01, 𝑃𝑒 = 1000, 𝑅𝑒 =
1000, 𝐶𝑎 = 0.1, and 𝐵𝑜 = 100 for all simulations 
presented in this work. The simulation runs until the 
droplet reaches 𝑦 = 0.5 with the time step size ∆𝑡 =
0.01 𝑠, and the mesh size is taken to be ℎ = 0.04 with a 
grid discretization of 𝑁𝑒𝑥 = 48 and 𝑁𝑒𝑦 = 96, 

corresponding to CFL of 0.48. The solution is 
approximated by basis functions with an expansion 
order 4. An example of a falling droplet with 𝜆𝜌 = 0.1 and 

𝜆𝜇 = 0.1 is presented in Figure 4. We observe that the 

droplet falls and turns into an ellipse in time, while the 
interface width and the area of the droplet are preserved.  
 

 
Figure 4. Contour of falling droplet, density ratio 𝜆𝜌 = 0.1, 

viscosity ratio 𝜆𝜇 = 0.1, 𝑁𝑒𝑥 = 48, 𝑁𝑒𝑦 = 96, and 𝑝 = 4. 

 
5.1. Effects of density ratio 𝝀𝝆 

 Figure 5 shows the variations of (a) center of mass 
and (b) falling velocity of the droplets with four different 
density ratios: 𝜆𝜌 = 0.1, 0.05, 0.01, and 0.001, while the 

bulk vapor density is fixed at 1 and the viscosity ratio 𝜆𝜇 

is fixed at 0.1. The plateau on the falling velocities of 𝜆𝜌 =

0.1 and 0.05 cases represent that the droplets have 
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reached their terminal velocities, which are around 2.6 
and 3.3, respectively. On the other hand, the falling 
velocities with 𝜆𝜌 = 0.01 and 0.001 show rather linearly 

increasing velocities whose slopes are 9.0 and 9.6, 
respectively, which are close to the value of gravity force, 
and it implies that the drag force for these cases is 
negligible compared with buoyancy. Due to the linearity 
of the falling velocity for cases 𝜆𝜌 = 0.01  and 0.001, the 

center of mass in time are well-fitted with the quadratic 
formulas, −4.5𝑡2 − 0.1𝑡 + 1.5 and −4.82𝑡2 − 0.51, 
respectively, while those of 𝜆𝜌 = 0.1 and 0.05 show 

linear regions as the droplets reach their terminal 
velocities. 
 The shapes of droplets with different 𝜆𝜌 around 

𝑦 = 0.5 are presented in Figure 6(a), and their 
circularities in time are given in Figure 6(b). We observe 
there are insignificant differences in the droplet shapes 
with respect to 𝜆𝜌. The buoyancy on the droplet is 

approximately proportional to 𝜎𝐵𝑜 =  𝜌𝑙𝐷
2𝑈0 when 

vapor density is much smaller than liquid density. On the 
other hand, the drag force onto the droplet is 
proportional to 𝜆𝜌𝜎𝑅𝑒𝐶𝑎 =  𝜌𝑣𝐷𝑈0

2 because the same 

circularity for different 𝜆𝜌 represents the same projected 

area. Therefore it can be concluded that the force balance 
between buoyancy and drag forces is mainly dependent 
on 𝜆𝜌, and whether the droplet reaches the terminal 

velocity in a short time or not is also determined by 𝜆𝜌. 

 

 
Figure 5. (a) Center of mass and (b) falling velocity depending 

on 𝜆𝜌 with 𝜆𝜇 = 0.1. 

 

 
Figure 6. (a) Droplet shapes when the center of mass is around 
𝑦 = 0.5 and (b) circularity in time for different 𝜆𝜌 with 𝜆𝜇 =

0.1. 
 
5.2. Effects of viscosity ratio 𝝀𝝁 

 Figure 7 presents the variations of the (a) center of 
mass and (b) falling velocity of the droplets with four 
different viscosity ratios: 𝜆𝜇 = 1.0, 0.5, 0.1, and 0.01, 

while the bulk vapor viscosity is fixed at 1 and the 
density ratio 𝜆𝜌 is fixed at 0.1. The droplets with 𝜆𝜇 = 1.0 

and 0.5 show their peak velocities at 𝑡 = 0.42 and 0.5 s, 
respectively, while in the other two cases the falling 
velocities approach their peaks. The measurements of 
center of mass are in accordance with the results of 
falling velocity by showing the quadratic region at the 
beginning and a linear region at the end. The center of 
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mass graph for 𝜆𝜇 = 1.0 and 0.5 cases after t = 0.4 s are 

enlarged and presented in Figure 7(a), and it illustrates 
that the slope for 𝜆𝜇 = 1.0 has a slightly concave shape, 

corresponding to its decreasing velocity after the peak. 
Figure 8(a) shows the snapshot of four droplets with 
different 𝜆𝜇 when they pass around 𝑦 = 0.5, and the 

deformation of droplets by the location are presented in 
Figure 8(b), and their circularities in time are recorded 
in Figure 8(c). The circular shape of droplets in 𝜆𝜇 = 0.1 

and 0.01 cases are relatively conserved, while in the 
other two cases the droplets are stretched horizontally 
and even a dimple at the top is developed. With 
increasing 𝜆𝜇 , the bulk liquid viscosity is lower, and it 

leads to decrease of the relative strength of the surface 
tension to the inertial forces. Hence, the interface can 
endure less pressure difference and the droplet has a 
more pronounced deformation.  
 With respect to the correlation of velocity and 
droplet shape, we can conclude that as long as the falling 
droplet maintains its elliptic shape, as the cases of 𝜆𝜇 =

0.1 and 0.01, its velocity still approaches the peak, but 
above this point, as the droplet is spread out or forms a 
dimple, as the cases of 𝜆𝜇 = 1.0 and 0.5, the velocity 

starts to drastically decrease. This difference on the 
evolution of velocities can be explained by the force 
balance, as similar to the previous analysis. In this 
example the increased drag force by 𝜆𝜇 primarily results 

from larger project area as well as higher drag 
coefficient, as reported in [39-42], by considering the 
falling velocity and 𝜆𝜌 are almost the same for different 

𝜆𝜇 . The spread shape deaccelerates the droplet, as if it 

plays a role as the parachute of a skydiver. 

 

 
Figure 7. (a) Center of mass and (b) falling velocity depending 

on 𝜆𝜇  with 𝜆𝜌 = 0.1. 

 

 

 
Figure 8. (a) Droplet shapes when the center of mass is around 
𝑦 = 0.5, (b) Droplet shapes in time with different locations and 
viscosity ratios,  and (c) circularity in time for different 𝜆𝜇  with 

𝜆𝜌 = 0.1. 
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5.3. Flow around falling droplet 
 Figure 9 shows the velocity field around the 
droplet with 𝜆𝜌 = 0.1 and 𝜆𝜇 = 1.0 in the right-half 

domain of the axis of symmetry, 𝑥 = 0.5. As the droplet 
moves a doughnut-shaped ring forms behind the droplet 
(from 𝑡 = 0.41 𝑠), and this ring is separated from its tail 
in the form of vortex loops. Van Dyke [43] also showed 
from the experiment that the vortex starts to form for Re 
larger than 130 and scales of the detached eddy increase 
considerably with further increase in Re. Since then, the 
droplet takes a shape of ellipsoid and it leads to growth 
of circulating region at the rear of the droplet. With the 
enhanced vortex size the velocity field stretches 
horizontally the fluid elements on the droplet surface. 
Through this positive feedback, the droplet is further 
deformed. The same result about the positive feedback 
was obtained in [43].  
 

 
Figure 9. Velocity fields around droplet with 𝜆𝜌 = 0.1 and 𝜆𝜇 =

1.0. 
 
6. Conclusion 
 We presented the least-squares spectral element 
scheme for two immiscible, incompressible fluids with 
large density and viscosity ratio. Two-dimensional 
coupled Cahn-Hilliard and Navier-Stokes equation with 
the volume-averaged velocity was solved, and C1 cubic 
Hermite polynomials were used in approximating the 
solution. A time-stepping procedure, Newton 
linearization and element-by-element technique were 
used. The p- and h-refinement study with the 

manufactured solution was conducted to verify our 
solver, and the performance of parallelization was 
measured. A falling droplet was numerically handled 
with our solver – the effects of density and viscosity ratio 
on the droplet dynamics were studied, and the flow 
around the droplet was analyzed. According to the 
classification of [44], all the simulation cases in this study 
are sorted as ‘sheet thinning’ state, which is expected to 
have breakup with long time travel. Therefore, for future 
study, studies on longer simulations or higher viscosity 
ratio to observe sheet-like shape of droplet and 
ultimately break up into small pieces are recommended.  
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