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Abstract - Pulse wave velocity (PWV) is an important index of 
arterial hemodynamics, which lays the foundation for 
continuous, noninvasive blood pressure automated monitoring. 
The goal of this paper is to examine the accuracy of PWV 
prediction based on a traditional homogeneous structural 
model for thin-walled arterial segments. In reality arteries are 
described as composite heterogeneous hyperelastic structures, 
where the thickness dimension cannot be considered small 
compared to the cross section size. In this paper we present a 
hemodynamic fluid - structure interaction model accounting 
for the variation of geometry and material properties in a 
radial direction. The model is suitable to account for the highly 
nonlinear orthotropic material undergoing finite deformation 
for each layer. Numerical analysis of single and two layer 
arterial segments shows that a single thick layer model 
provides sufficient accuracy to predict PWV. The dependence of 
PWV on pressure for three vessels of different thicknesses is 
compared against a traditional thin wall model of a membrane 
shell interacting with an incompressible fluid. The presented 
thick wall model provides greater accuracy in the prediction of 
PWV, and will be important for blood pressure estimation 
based on PWV measurements. 

Keywords: Pulse wave velocity, thick wall, multi-layer 
model noninvasive blood pressure, convective fluid 
phenomena, hyperelasticity, finite deformation 
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Nomenclature 
A Cross sectional area (m2) 
u Axial flow velocity (m/s) 
p Transmural pressure (Pa) 
ρ Density of incompressible fluid 

(kg/m3) 
H Arterial wall thickness (m) 
𝑅1 , 𝑅2 Internal and external wall radii in a 

zero stress condition respectively 
(m) 

η Ratio of the wall internal surface 
normal displacement to the radial 
coordinate (𝑟)  

𝜆𝑟, 𝜆𝜃 , 𝜆𝑧 Stretch ratios in a radial, 
circumferential and axial directions 
respectively 

𝜎𝜃 , 𝜎𝑟 Circumferential and radial Cauchy 
stress components (Pa) 

𝐸𝜃 , 𝐸𝑟 Circumferential and radial Green-
Lagrange strain components 

A 
[
𝑎𝜃𝜃 𝑎𝜃𝑟
𝑎𝜃𝑟 𝑎𝑟𝑟

]Symmetric tensor of 

material constants  
W Strain energy density function 

Q 
Quadratic function of the Green-
Lagrange strains 

𝛿𝛼𝛽 
Kronecker delta: is one if the 
variables are equal, and zero 
otherwise 
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Subscripts 
(t,z)   
 
Superscript     
T                                   

Derivatives by time and axial 
coordinates 
 
Transpose matrix or vector 

 
1. Introduction 
 Pulse wave velocity (PWV) quantification 
commonly serves as a highly robust prognostic 
parameter being used in a preventative cardiovascular 
therapy. Being dependent on arterial elastance, it can 
serve as a marker of cardiovascular risk [1]. Since it is 
influenced by a blood pressure (BP), the pertaining 
theory can lay the foundation in developing a technique 
for noninvasive blood pressure measurement.  
 The potential of estimating arterial blood 
pressure based on PWV has been investigated in a 
number of publications considering a linearized 
acoustical approach (Moens-Korteweg equation), or its 
empirical generalization, introducing exponential 
presentation of the Young modulus as a function of a 
blood pressure (BP) [1-3]. A physically based 
characterization built by modeling arteries as fluid-
filled compliant thin walled cylindrical membrane shells 
is presented in [4,5]. The present paper describes a 
mathematical model predicting PWV propagation with 
rigorous account of nonlinearities in the fluid dynamics 
model, blood vessel elasticity, and finite dynamic 
deformation of multi-layer thick wall arterial segments.  
This model is validated within the context of published 
vessel characteristics and finite element simulations, 
with extension to PWV and application to continuous, 
noninvasive blood pressure measurements. In the 
present work, the arterial wall is considered as a 
heterogeneous composite hyperelastic structure. 
Healthy arteries are composed of three distinct layers: 
the tunica intima (the innermost layer), the tunica 
media (the middle layer) and the tunica adventitia (the 
outer layer), as shown in Figure 1. We discuss a 
material description of each layer without thin-wall 
assumptions, based on a material description of an 
artery in a passive state originally proposed by Zhou 
and Fung [6]. A novel mathematical model predicting 
PWV is proposed accounting for nonlinear aspects of a 
convective fluid phenomena, hyperelastic constitutive 
relations, and finite deformation of a thick arterial wall. 
 The errors introduced by the “thin” walled 
assumptions have been explored by Bergel [7] 
(replicated by [1]), based on a linear elastic model for 
the vessel walls undergoing small deformations. The 

present work extends this analysis by accounting more 
accurately for material properties and finite 
deformation in arterial hydro-elastodynamics.  
 

 
Figure 1. The anatomy of the aortic wall. 

 

2. Theory 
 

2.1. Fluid-Structure Interaction Model 
 One dimensional models simulating blood flow in 
arteries effectively describe pulsatile flow in terms of 
averages across the section flow parameters. Although 
they are not able to provide the details of flow 
separation, recirculation, or shear stress analysis, they 
should accurately represent the overall and averaged 
pulsatile flow characteristics, particular PWV. 
Derivations of one dimensional models can be found in 
a number of papers, see for instance [4-5], and are not 
repeated here. 
 Conservation of mass and momentum results in 
the following system of one dimensional equations 
 
𝐴𝑡 + (𝑢𝐴)𝑧 = 0 (1) 

𝑢𝑡 + (
𝑢2

2
+
𝑝

𝜌
)𝑧 = 0 (2) 

  
 For an impermeable thick wall vessel the 
pressure – strain relationship is maintained by 
equilibrium condition as a function p=p(η), based on 
relevant constitutive relations. Noting  
that 𝐴 = 𝜋𝑅1

2(1 + 𝜂)2 , and assuming that transmural 
pressure is a smooth function of a wall normal 
displacement (derivative 𝑝𝜂 = 𝜕𝑝 𝜕𝜂⁄  exists at any 

point), the total system of equations can be presented in 
the following non-conservative form 
 
𝑈𝑡 + 𝐻(𝑈)𝑈𝑥 = 0 (3) 

 where  
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𝑈 = [
𝜂
𝑢
] ;𝐻 = [

𝑢
1 + 𝜂

2
𝑝𝜂

𝜌
𝑢
] (4) 

 
 The characteristics analysis shows that the 
system (3) is strictly hyperbolic, with real and distinct 
eigenvalues. PWV is associated with the forward 
running wave velocity, i.e. the largest eigenvalue, hence 
it is identified as 
  

𝑃𝑊𝑉 = 𝑢 + √
1+ 𝜂

2𝜌
𝑝𝜂  (5) 

 
 The partial derivative 𝑝𝜂 indicates sensitivity of 

pressure with respect to the wall normal displacement, 
and has a clear interpretation as tangent (incremental) 
moduli in finite strain deformation. System (1), (2) is 
typically closed by defining an explicit algebraic 
relationship between pressure and normal 
displacement. For instance, in case of a small 
deformation and linear elastic response of a thin walled 
membrane cylindrical shell pressure relates to the 
circumferential strain via 
 

𝑝 =
𝐸𝐻

𝑅1
𝜂 (6) 

 
 so that equations (5), (6) can be transformed to 
the simplified form  
 

𝑃𝑊𝑉 = 𝑢 + 𝑐𝑀𝐾√1 + 𝜂 (7) 

 

in which 𝑐𝑀𝐾 = √
𝐸𝐻

2𝜌𝑅1
 is the Moens-Korteweg speed of 

propagation [1] 
 Under the assumption 𝑢 ≪ 𝑐𝑀𝐾 , 𝜂 ≪ 1 (linearized 
approach) equation (7) converts into the Moens –
Korteweg equation for the forward and backward 
travelling waves. In the general case, equation (5) is 
supplemented by constituent equations for a 
hyperelastic anisotropic arterial wall, accounting for the 
finite deformation. 
 
 
 

2.2. Mechanical framework 
 Consider axisymmetric case with polar 
coordinate R describing material point in a load free 
state (Lagrangian frame of reference), and a polar 
coordinate r=r(R) associated with a moving particle 
(Eulerian description) – in a deformed state. Axial 
tethering is not considered here, and axial strain 
component is neglected. The corresponding principal 
stretch ratios 𝜆𝑟 , 𝜆𝜃and the Green strains 𝐸𝑟, 𝐸𝜃, are [8]. 
 

𝜆𝑟 =
𝑑𝑟

𝑑𝑅
, 𝜆𝜃 =

𝑟

𝑅
, 𝐸𝛼 =

1

2
(𝜆𝛼
2 − 1), (𝛼 = 𝑟, 𝜃) (8) 

 
 Numerous formulations of constitutive models for 
arteries have been proposed in the literature. In a 
comparison paper [10] it is concluded that the 
exponential descriptor of the passive behavior of 
arteries, due to Zhou-Fung, is “the best available”.  
According to Zhou-Fung [6] the strain energy density 
function for the pseudo elastic constitutive relation may 
be presented in the form 
 

𝑊 =
1

2
𝑐(𝑒𝑄 − 1) (9) 

  
 where c is the material coefficient, Q is the 
quadratic function of the Green-Lagrange strains 𝐸𝑟, 𝐸𝜃  
and material parameters 𝑨 tensor [6] 
 

𝑄 = 𝑎𝜃𝜃𝐸𝜃
2 + 2𝑎𝜃𝑟𝐸𝜃𝐸𝑧 + 𝑎𝑟𝑟𝐸𝑧

2 (10) 

 
 For infinitesimally small strains the exponential 
form of energy function is reduced to the following 
quadratic form, relating to the plane theory of linear 
anisotropic elasticity 
 

𝑊 =
1

2
𝑐(𝑒𝑄 − 1) =

𝑐

2
(𝑄 +

𝑄2

2!
+ ⋯)

≅
𝑐

2
(𝑎𝜃𝜃𝐸𝜃

2 + 2𝑎𝜃𝑟𝐸𝜃𝐸𝑧

+ 𝑎𝑟𝑟𝐸𝑧
2) 

(11) 

 

 The Cauchy – Green stress components are 
defined as the following [6]. 
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𝜎𝜃 = 𝜆𝜃
2 𝜕𝑊

𝜕𝐸𝜃
= 𝑐𝜆𝜃

2𝑒𝑄𝑆𝜃 , 𝑆𝜃 = 𝑎𝜃𝜃𝐸𝜃 + 𝑎𝜃𝑟𝐸𝑟

𝜎𝑟 = 𝜆𝑟
2
𝜕𝑊

𝜕𝐸𝑟
= 𝑐𝜆𝑟

2𝑒𝑄𝑆𝑟 , 𝑆𝑟 = 𝑎𝜃𝑟𝐸𝜃 + 𝑎𝑟𝑟𝐸𝑟

 (12) 

 
 Neglecting inertia forces, the problem of an artery 
subjected by transmural pressure is described by 
solving equation of equilibrium in Eulerian frame [8] 
 
𝜕𝜎𝑟
𝜕𝑟

+
𝜎𝑟 − 𝜎𝜃
𝑟

= 0 (13) 

 

that could be transformed to the  Lagrangian 
coordinates using (8) 
 
𝜕𝜎𝑟
𝜕𝑅

+
𝜆𝑟(𝜎𝑟 − 𝜎𝜃)

𝜆𝜃𝑅
= 0 (14) 

  
 Note, that additional equation for the strains, 
known as the compatibility equation, follows from (8) 
 
𝜕𝜆𝜃
𝜕𝑅

=
𝜆𝑟 − 𝜆𝜃
𝑅

 (15) 

 Or, in term of circumferential Green strain 
component 
 
𝜕𝐸𝜃
𝜕𝑅

= 𝜆𝜃
𝜆𝑟 − 𝜆𝜃
𝑅

 (16) 

 The boundary conditions for the internal and 
external radii of the artery are 
 

𝜎𝑟(𝑅1) = −𝑝,   𝜎𝑟(𝑅2) = 0 (17) 

 Equations (8), (12), (14), (16) and the boundary 
conditions (17) allow us to find components of stress, 
strain and stretch ratios as functions of a transmural 
pressure, as well as  incremental moduli of hyperelastic 
finite deformation, required by (5) to predict a wave 
front speed of propagation, i.e. PWV.  
 In a view of numerical analysis we have to derive 
the tangent moduli (D) by differentiation of a stress-
strain relationship (12) (𝛿𝛼𝛽- Kronecker delta: is one if 

the variables are equal and zero otherwise) 

Dαβ =
∂σθ
∂Eβ

= cλα
2eQ (aαβ + 2SαSβ +

2Sα
λα
2
δαβ) ,

α, β = r, θ 

(18) 

 
2.3. Continuation method for the nonlinear 
boundary value problem 
 The theory of continuation method enables the 
transformation of a boundary value problem into the 
initial value problem by introducing a parameter, with 
the following imbedding the considered problem into 
the family of relating parametric problems [9]. We 
introduce a load parameter 0 ≤ 𝜏 ≤ 1 and substitute 
𝑝

 
→ 𝜏𝑝 considering continuous successive load of the 

vessel by internal pressure from zero to a nominal 
value. Assume that solution of (8-17) depends 
continuously on this parameter and is differentiable 
with respect to this parameter. Starting from the known 
answer for a certain value of the parameter (𝜏 = 0 in 
the present case), the solution of the equation for other 
values of the parameter may be obtained by integrating 
the rate of change of the solution with respect to the 
parameter.  
 Differentiating constituent equations (12) by 
continuation parameter (the dot above means partial 
derivative by 𝜏), yields 
 

𝜎𝛼̇ =∑𝐷𝛼𝛽𝐸̇𝛽 ,

𝛽

 𝛼, 𝛽 = 𝑟, 𝜃 (19) 

 
 To solve the problem numerically, we select the 
vector variable 𝒁 = (𝜎𝑟, 𝐸𝜃)

𝑇 as the primary variable in 
our model, since it preserves continuity for the 
multilayered structure with discontinuous mechanical 
properties. The rate of “discontinuous” variables 
 𝑌 = (𝜎𝜃 , 𝐸𝑟)

𝑇 follows from (19) accordingly 
 

𝒀̇ = 𝑩𝒁̇, 𝑩 = 𝐷𝜃𝜃
−1 (

det (𝑫) 𝐷𝑟𝜃
−𝐷𝜃𝑟 1

)  (20) 

 
 To differentiate equation (14) by 𝜏, expand 
logarithm of the algebraic part 𝐹 = 𝜆𝑟𝜆𝜃

−1(𝜎𝜃 − 𝜎𝑟)/𝑅  
 

ln 𝐹 = ln 𝜆𝑟 − ln 𝜆𝜃 + ln(𝜎𝜃 − 𝜎𝑟) − ln 𝑅 (21) 

 and take derivatives of  both sides 
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𝑑𝜎̇𝑟
𝑑𝑅

= 𝐹̇ = 𝐹 (
𝐸̇𝑟

𝜆𝑟
2 −

𝐸̇𝜃

𝜆𝜃
2 +

𝜎̇𝜃 − 𝜎̇𝑟
𝜎𝜃 − 𝜎𝑟

) (22) 

 
 Similar procedure, applied to the compatibility 
equation (16) yields 
 

𝑑𝐸𝜃̇

𝑑𝑅
=
𝜆𝜃
𝑅𝜆𝑟

𝐸̇𝑟 + (
𝜆𝑟
𝑅𝜆𝜃

−
2

𝑅
)𝐸̇𝜃 (23) 

 
 Now equations (22), (23) could be presented in a 
matrix form 
 
𝑑𝒁̇

𝑑𝑅
= 𝑪1𝒁̇ + 𝑪2𝒀̇ (24) 

 
in which 
 

𝐶1 =

(

 
 

−𝐹

𝜎𝜃 − 𝜎𝑟

−𝐹

𝜆𝜃
2

0
𝜆𝑟
𝑅𝜆𝜃

−
2

𝑅)

 
 
; 𝐶2 =

(

 
 

−𝐹

𝜎𝜃 − 𝜎𝑟

−𝐹

𝜆𝑟
2

0
𝜆𝜃
𝑅𝜆𝑟)

 
 

 (25) 

 
 Substituting (20) in Eq.(24) we arrive at the final 
differential equation 
 
𝑑𝑍̇

𝑑𝑅
= 𝑪𝒁̇, 𝑪 = 𝑪1 + 𝑪2𝑩 (26) 

 
 with the boundary conditions, obtained by 
differentiation of the boundary conditions (17)  (note 
that pressure in (17) is being multiplied by τ, and   
𝑰 = [1 0]) 
 

𝑰 ∙ 𝒁(𝑅1)=-p; I∙ 𝒁(𝑅2) = 0 (27) 

 The initial parameter method presumes the 
solution of the linear boundary value problem (26) to 
be represented in the form 
 

𝒁̇ = 𝒁̇1 + 𝜇𝒁̇2 (28) 

 Here the vector functions  𝒁̇1, 𝒁̇2 are independent 
solutions of equation 26 with the following initial 
conditions 

 

𝒁̇1(0) = (−𝑝  0)
𝑇 , 𝒁̇𝟐(0) = (0  1)

𝑇 (29) 

and μ is an unknown constant determined from the 
second boundary condition (27) 
 

𝜇 = −
𝑰 ∙ 𝒁1(𝑅2)

𝑰 ∙ 𝒁2(𝑅2)
 (30) 

 
 Once 𝒁̇ is known at 𝜏 = 0, then vector 𝒁 of 
continuous variables and vector 𝒀 of discontinuous 
functions could be calculated by integrating the relating 
rate of change 
 
𝒁(𝜏 + ∆𝜏) = 𝒁(𝜏) + 𝒁̇(𝜏)Δ𝜏 

𝒀(𝜏 + ∆𝜏) = 𝒀(𝜏) + 𝑩𝒁̇(𝜏)Δ𝜏 
(31) 

 
 The above process continues to obtain solutions 
for τ=1. The pressure vs. normal displacement 𝑝 = 𝑝(𝜂), 
is tracked at  𝑅 = 𝑅1 for each level of successively 
increasing load to create incremental moduli 𝑝(𝜂) 
function, required by equation (5) to predict a wave 
front speed of propagation, i.e. PWV.   
 
3. Results and Discussion 
 To validate the algorithm the numerical 
investigation of an inflated rabbit carotid arterial 
segment is presented and compared to the results 
based on a finite element analysis, obtained by 
Holzaphel et al. [10]. We use the rabbit arterial data 
presented by Chuong and Fung [11]: c=26.95kPa; 
𝑎𝜃𝜃 = 0.9925, 𝑎𝜃𝑟 = 0.0193, 𝑎𝑟𝑟 = 0.0089, R1=0.71 
mm, R2=1.1 mm (from experiment number 71).  Figure 
2a shows the predicted mechanical response of the 
considered artery. Squares relate to the finite element 
analysis [10] and are in a good agreement with the 
results based on our present single layer thick wall 
model. The derivative 𝑝𝜂  of pressure by radial 

displacement of an internal surface, i.e. hyperelastic 
incremental moduli, presented in Figure 2b, is a 
primary factor affecting PWV in a cylinder filled with a 
moving fluid according to equation (5). At diastolic 
pressure when flow is close to zero, PWV is dominated 
by the physical anisotropic properties of the aorta. At 
systolic pressure the pulse wave velocity is also affected 
by flow velocity which may be approximated as 20-25% 
of PWV according to [15]. The insight from equation (5) 
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enables the PWV measure to be used for prediction of 
both SBP and DBP.  
 

 
Figure 2. Mechanical response of a carotid artery from a 

rabbit during inflation. a) depicts the dependence of the inner 
diameter on internal pressure. The solid line is a prediction 

based on our single layer thick wall model that is in good 
coorelation to the results (squares) from [10]. b) depicts 

incremental moduli 𝑝𝜂of the hyperelastic artery, i.e. 

derivative of a pressure by the radial displacement 𝜂. 

 
 A single layer thick wall model with 
homogeneous mechanical properties does not account 
for the distinct mechanical response of the separate 
layers (intima, media, adventitia). Since the intima 
contributes negligible mechanical strength [10], a two- 
layer model, incorporating media and adventitia only, is 
analyzed. We assume, following [10, 12], that media 
occupies approximately 0.6 of the arterial wall 
thickness. Experimental tests indicate that media is 
about 10 times stiffer that adventitia [12, 13], which 
allows to scale accordingly material properties tensor A. 
 Figure 3 depicts predicted mechanical response 
of the considered artery, calculated based on a single 
layer thick wall model (dash lines) and two-layers thick 
wall model (solid lines). The circumferential Cauchy 
stress is plotted in Figure 3a, normal displacement in 
Figure 3b, and radial component of Green strain in 
Figure 3c, all against the radial coordinate. The abrupt 
change of mechanical properties at the boundary 
between media and adventitia results in a sharp 
discontinuity of circumferential stress and radial strain 
components. Radial displacement is a continuous 
function, deviating slightly from the single layer 
counterpart as shown in Figure 3b. In the proximity of 
internal cylindrical surface distributions of all 
parameters calculated by both models (1 layer, 2 

layers) are identical. Since PWV is determined by the 
local wall stiffness, relating to the internal cylindrical 
surface, the latter justifies application of the single thick 
layer model to the PWV based blood pressure 
predictions. 
 

 
Figure 3. Single layer thick wall model (dashed line) is as 

accurate for PWV prediction as the two layer thick wall model 
(solid line) and avoids associated discontinuities. Plots of 

circumferential Cauchy stress (a), normal displacement (b) 
and radial component of a Green strain (c) through the wall 

thickness. For the 2-layer model the light gray represents the 
media and the dark gray represents the adventitia layer. 

 
 Figure 4 depicts the dependence of PWV on 
pressure for the systole phase (marked as “SBP”) and a 
diastole phase (marked as “DBP”) for three vessels of 
different thicknesses of a human aorta. The anisotropic 
material constants for a human aorta with an outer 
radius of 14.5mm are used from Fung et al. [14]. The 
inner radius is then set based on the three wall 
thickness considered in Figure 4. Following [15] we 
assume here that the flow velocity u=0 for the diastole 
phase, and is equal to 20% of PWV for the systole phase. 
All results have been compared with the simplified thin 
walled model of a membrane shell interacting with an 
incompressible fluid [5].  
 The analysis presented in Figure 4 considers 
normal wall thicknesses less than 4mm [16] across a 
range of transmural blood pressures.  To explore 
inaccuracies induced by use of the less complex thin 
wall model, error in both PWV and blood pressure were 
calculated for a blood pressure of SBP/DBP = 150/95 
mmHg representing the median of stage 1 hypertension 
[17]. The single layer thick wall model improves PWV 
accuracy by 4.0-8.4% across a range of normal wall 
thickness. One of the goals for the model is PWV-based 
blood pressure prediction, where the thick wall model 
offers an improvement of 3.3-19.4%. Accuracy 
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improvements are highly dependent on the relative 
dimensions of wall thickness to arterial radius. As the 
ratio of H/R1 approaches zero, the error of PWV 
prediction approaches zero, showing an asymptotic 
accuracy as an order of wall thickness to internal radius 
ratio. 
 

Figure 4. PWV curves for systolic blood pressure (SBP) and 
diastolic blood pressure (DBP) for the non-linear single layer 
thin and thick aortic wall. Figure 4a corresponds to the vessel 

thickness of H=4mm, H/R1=0.38; Figure 4b to H=2.5mm, 
H/R1=0.21; Figure 4c to H=1mm, H/R1=0.07; Figure 4d, 

percent difference between the thin and thick wall model 
predictions at SBP/DBP = 150/95 mmHg for PWV (solid line) 

and blood pressure (dotted line).  
 

4. Conclusion 
 In this paper we first emphasize the importance 
of predicting PWV of thick wall arteries based on a 
three-dimensional anisotropic material description. Age 
related thickening of the wall, or cardiovascular 
diseases may cause notable change of a vessel wall 
thickness [1]. The model employed above is based on a 
Y.C. Fung phenomenological approach in which the 
macroscopic nature of the anisotropic biological 
material is modeled. A novel mathematical model 
predicting PWV propagation with rigorous account of 
nonlinearities in the fluid dynamics model, blood vessel 
elasticity, and finite deformation of multi-layer thick 
wall arterial segments was studied. It was found that 
the account for the multilayer model affects distribution 

of local parameters in the proximity of the external 
layer (adventitia), and does not affect stiffness related 
to the internal layer. The latter means that the single 
thick layer model is sufficient to predict PWV of an 
arterial segment. For a hypertensive subject, the three 
dimensional thick wall model provides improved 
accuracy up to 8.4% in PWV prediction over its thin 
wall counterpart. This translates to nearly 20% 
improvement in blood pressure prediction based on a 
PWV measure.  
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