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Abstract- This paper presents a two-dimension (2-D) 
numerical model for simulating dam-break flow involving 
wet-dry fronts over irregular topography. The Central-
upwind scheme is chosen to calculate interface fluxes for each 
cell edge. A second order spatial linear reconstruction with 
multidimensional limiter and second order TVD Runge-Kutta 
scheme are chosen to acquire high order accuracy in space 
and time. Non-negative water reconstruction of variables at 
cell interfaces and compatible discretization of slope source 
term lead to stable and well-balanced scheme for hydraulics 
over irregular topography. The friction term is discretized 
with a semi-implicit scheme for numerical stability when very 
small water depth exists. An accurate and effective technique 
is presented for tracking wetting-drying interfaces during the 
process of wave front propagation on dry bed. The capacity 
and accuracy of current model are verified by several 
benchmark tests as well as a real dam-break case, and good 
performances are achieved in tests.  

Keywords: Dam-break flow, Central-upwind method, 
Well-balanced, Wetting and drying, Finite volume 
method.   
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Nomenclature 
t   The simulating time 
h    The water depth 
x    The horizontal coordinate 
y    The horizontal coordinate 
u The depth-averaged velocity components

in x direction

v    The depth-averaged velocity 
components in y direction 

Z    The bed elevation 
g    The gravitational acceleration 
νt       The eddy viscosity coefficient 
nb     The Manning’s roughness coefficient 
Sf

x   The friction slope terms in the x 
direction 

Sf
y

 The friction slope terms in the y 

direction 
η       The water surface level 
𝑛𝑥            The components of unit normal vector in 

the 𝑥 direction 
𝑛𝑦            The components of unit normal vector in 

the 𝑦 direction 
lik     The length of the kth edge of control 

volume i 
Fik    The numerical convective flux across lik 
F̃ The diffusive flux across lik in the 𝑥 

direction 
G̃ The diffusive flux across lik in the 𝑥 

direction 
UR   The one-sided local speed of 

propagation on right side of kth edge 
UL       The one-sided local speed of 

propagation on left side of kth edge 
SR       The one-sided local speeds of 

propagation on right side of kth edge 
SL         The one-sided local speeds of 

propagation on left side of kth edge 
𝜀    The threshold for defining wet and dry 

cells 
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1. Introduction 

Dam-break flows over irregular bed often 
experience the cases as transcritical flows, steep bed 
slope, very small water depth, cells’ wetting and 
drying, wave propagation. Inappropriate hydraulic 
simulation may leads to inaccurate and unstable 
prediction. Hence, it’s necessary to apply a robust, 
accurate and effective hydraulic model to predict 
Hydraulic parameters of dam-break flow.  

By using Godunov-type scheme, complicated 
shallow water flow phenomena such as transcritical 
flows, shock-type flows and moving wet-dry interface 
of a water wave front can be appropriately simulated. 
To solve a Godunov-type scheme, approximate 
Riemann solver is normally adopted to estimate the 
numerical fluxes of hyperbolic system and various 
numerical schemes have been proposed to solve 
Riemann problems. As explained in the next section, 
the Central-upwind method which is applied in 
current study, does not require computationally 
expensive decomposition of numerical flux on the 
basis of eigenvalues and furthermore, only an 
estimation of largest and smallest eigenvalues of the 
Jacobian matrix, which leads to a significant reduction 
of computational cost.  

Flow over initially dry bed is very common in 
dam break flows, which involves complicated 
boundary conditions. For irregular topography, both 
positive and negative bed slopes generally exist, which 
may leads to cell drying and wetting with moving 
fronts which could not be easily solved by horizontal 
boundary condition. Some techniques have been 
developed in using finite volume method and shallow 
water equations. Zhao et al. [19] and Sleigh et al. [14] 
introduced two similar schemes to track the wetting 
and drying fronts, in which cells are divided into wet, 
dry and partially dry types according to two 
tolerances. Brufau et al. [2, 3] proposed a technique 
using unsteady wetting and drying conditions in flows 
and claimed that the method gave zero mass error, 
which is valid for an FVM with only first-order 
accuracy. Falconer et al. [5] and Falconer et al. [6] 
developed a wetting and drying method for regular 
grid finite difference model, which is recently refined 
for triangular grids by Xia et al. [17]. In present study, 
a technology for tracking wet-dry front is developed 
combing with method of Brufau et al. [3] to achieve 
zero mass error.  

It is well-known that accuracy is the most 
important aspect for flow solver since it has a direct 
influence on the number of computational cells 
required. This means that a higher-order 
implementation involving a piecewise linear 
reconstruction is necessary. Higher order schemes 
often produce nonphysical oscillations which can be 
effectively suppressed by using limiters. In the present 
study, the multidimensional limiter proposed by 
Jawahar et al. [9] is adopted to calculate the limited 
gradient for reconstruction of variables. Moreover, a 
second order accuracy in time could be obtained in 
current model by apply Runge-Kutta scheme.  

Based on the efficient divergence form of the 
slope source term proposed by Valiani et al. [16], Hou 
et al. [8]developed a novel slope source term 
treatment which is devised to transform the slope 
source of a cell into a flux form. By splitting the integral 
of the bed slope source term over a cell into those of 
the sub-cells, higher accuracy can be achieved by the 
novel treatment than that proposed by Valiani et al. 
[16]. This method can strictly preserve the well-
balanced property and can be conveniently employed 
with second order or even higher order schemes. In 
addition, this treatment is able to handle the 
occurrence of wet-dry fronts, in conjunction with the 
non-negative water depth reconstruction. 

 
2. Numerical Scheme 

The 2-D shallow water is adopted in the current 
study as governing equations which can be described 
as: 

 
𝜕ℎ

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑢ℎ) +

𝜕

𝜕𝑦
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𝜕
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𝜕
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The 2-D shallow water equations constitute a 

hyperbolic system which can be presented in the 
following vector form: 
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+
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𝜕𝑦
+ 𝑆 (4) 
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𝑈 = (
ℎ

𝑢ℎ
𝑣ℎ

) , 𝐹 = (
𝑢ℎ

𝑢2ℎ + 0.5𝑔ℎ2

𝑣𝑢ℎ

) 𝐺 =

(
𝑣ℎ

𝑢𝑣ℎ
𝑣2ℎ + 0.5𝑔ℎ2

) , �̃� = (

0
ℎ𝜈𝑡(𝜕𝑢/𝜕𝑥)
ℎ𝜈𝑡(𝜕𝑣/𝜕𝑥)

) (5) 

 

�̃� = (

0
ℎ𝜈𝑡(𝜕𝑢/𝜕𝑦)
ℎ𝜈𝑡(𝜕𝑣/𝜕𝑦)

) ,  𝑆 = (

0

−𝑔ℎ (
𝜕𝑍

𝜕𝑥
+ 𝑆𝑓

𝑥)

−𝑔ℎ (
𝜕𝑍

𝜕𝑦
+ 𝑆𝑓

𝑦
)

) (6) 

 
in which t = time, h = the water depth, x and y are 
horizontal coordinates, u and v are the depth-averaged 
velocity components in x and y directions respectively, 
Z is the bed elevation, g is the gravitational 
acceleration, νtis eddy viscosity coefficient given by 

νt = √𝑔

C
h√u2 + v2, nb is Manning’s roughness 

coefficient. Sf
x and Sf

y
 are friction slope terms in the x, y 

directions, respectively, which can be determined by 
conventional formulas involving Manning roughness 

coefficient nb, Sf
x = nb

2h−4/3u√u2 + v2, Sf
y

=

nb
2h−4/3v√u2 + v2. Besides, in this work, water surface 

level η is used in the second order spatial 
reconstruction and the non-negative water depth 
reconstruction. η can be calculated as η = h + Z.  

 
2.1. Discretization of Flow and Sediment 
Governing Equations 

The coupled system is discretized on an 
unstructured triangular grid by finite volume method.  

 
𝜕𝑈𝑖

𝜕𝑡
= −

1

𝐴𝑖
∑ 𝐹𝑖𝑘

3
𝑘=1 𝑙𝑖𝑘 +

1

𝐴𝑖
∑ (3

𝑘=1 �̃�𝑛𝑥 + �̃�𝑛𝑦)𝑙𝑖𝑘 + 𝑆𝑖 (7) 

 
in which 𝑛𝑥 and 𝑛𝑦 are components of unit normal 

vector in the 𝑥 and 𝑦 directions, lik is the length of the 
kth edge of control volume i, Fik is numerical 
convective flux across lik, (F̃nx + G̃ny) is the diffusive 

flux across lik.  
 

2.2. Central-upwind scheme for the interface flux 
Central-upwind schemes on general triangular 

grids for solving two-dimensional systems of 
conservation laws are developed by Kurganov et al. 
[11], which enjoy the main advantages of the Godunov-

type central schemes, i.e. simplicity, universality and 
robustness and can be applied to problems with 
complicated geometries. The triangular central-
upwind schemes are based on the use of the 
directional local speeds of propagation and are a 
generalization of the central-upwind schemes on 
rectangular grids, introduced in [10].  

Applying the Central-upwind scheme, the 
convective fluxes in Eqs. (7) could be estimated by:  
 

𝐹𝑖𝑘 =
[𝑆𝑅�⃗�(𝑈𝐿)𝑖𝑘+𝑆𝐿�⃗�(𝑈𝑅)𝑖𝑘]⋅𝑛−𝑆𝑅𝑆𝐿[(𝑈𝑅)𝑖𝑘−(𝑈𝐿)𝑖𝑘]

(𝑆𝑅+𝑆𝐿)
 (8) 

 

in which F⃗⃗(UL)ik and F⃗⃗(UR)ik are normal fluxes on the 
left and right sides of the kth edge, respectively. SR and 
SL are one-sided local speeds of propagation on right 
and left sides of kth edge, respectively, and can be 
determined by 
 
𝑆𝑅 =

max {𝜆𝑁 [
𝜕𝐹𝑛(𝑈𝐿)

𝜕𝑈
]

𝑖𝑘
, 𝜆𝑁 [

𝜕𝐹𝑛(𝑈𝑅)

𝜕𝑈
]

𝑖𝑘
, 0} , 𝑆𝐿 =

− min {𝜆1 [
𝜕𝐹𝑛(𝑈𝐿)

𝜕𝑈
]

𝑖𝑘
, 𝜆1 [

𝜕𝐹𝑛(𝑈𝑅)

𝜕𝑈
]

𝑖𝑘
, 0} (9) 

 

with λ1 [
∂Fn(U)

∂U
]

ik
≤ ⋯ ≤ λN [

∂Fn(U)

∂U
]

ik
 being the N 

eigenvalues of the Jacobian matrix ∂Fn(U)/ ∂U using 
reconstructed variables (UL)ik or (UR)ik.  

It can be deduced that, when a cell is dry or 
nearly dry, SR + SL ≈ 0 exists in denominator of 
equation Eqs. (8) which may cause numerical 
instability. In order to handle this situation that both 
SR and SL are zero (or very closeto zero), following the 
suggestion in (Bryson et al., 2011), the scheme Eqs. (8) 
reduces to: 

 

𝐹𝑖𝑘 = 0.5[�⃗�(𝑈𝐿)𝑖𝑘 +

�⃗�(𝑈𝑅)𝑖𝑘]           𝑖𝑓  𝑆𝑅 + 𝑆𝑅 < 10−8    (10) 
 

2.3. Spatial linear Reconstruction 
In this paper, the following 2-D linear 

reconstruction is employed:  
 

�̊�(𝑥, 𝑦) = 𝑈𝑖 + (𝑈�̆�)𝑖(𝑥 − 𝑥𝑖) + (𝑈�̆�)𝑖(𝑦 −

𝑦𝑖),  (𝑥, 𝑦) ∈ 𝐴𝑖  (11) 
 

in which Ů(x, y) is the reconstructed value of variables 
at point (x, y) inside of cell i, (Ux̆)i and (Uy̆)i are 

component-wise approximation of numerical 
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derivatives which are computed via a nonlinear 
limiter, used to minimize the oscillations of the 
reconstructions. In current study, the 
multidimensional limiter proposed by Jawahar et al. 
[9] is adopted to calculated limited gradient ∇Uĭ within 
a cell by taking the weighted average of three 
representative unlimited gradients.  

In order to preserve the well-balanced property 
for second order schemes, as suggested by Audusse et 

al. [1], surface levels η̊L
M, η̊R

M, water depths h̊L
M, h̊R

M, flow 

discharges (hu)˚
L
M, (hu)˚

R
M,(hv)˚

L
M and (hv)˚

R
M are 

reconstructed at the midpoint M of considered edges. 
The reconstructed bed levels at M are given by 

 

�̊�𝐿
𝑀 = �̊�𝐿

𝑀 − ℎ̊𝐿
𝑀,  �̊�𝑅

𝑀 = �̊�𝑅
𝑀 − ℎ̊𝑅

𝑀     (12) 
 

Besides, flow velocities required at M are 
computed as 

 

�̊�𝐿
𝑀 = (ℎ𝑢)˚

𝐿
𝑀/ℎ̊𝐿

𝑀,  �̊�𝐿
𝑀 = (ℎ𝑣)˚

𝐿
𝑀/

ℎ̊𝐿
𝑀 ,  �̊�𝑅

𝑀 = (ℎ𝑢)˚
𝑅
𝑀/ℎ̊𝑅

𝑀,  �̊�𝑅
𝑀 = (ℎ𝑣)˚

𝑅
𝑀/ℎ̊𝑅

𝑀   
 (13) 

 
A threshold 𝜀 will be introduced for defining wet 

and dry cells. The second order reconstructions are 
only applicable to the wet cells. 

 
2.4. Non-negative water depth reconstruction 

A robust and efficient reconstruction approach 
to preserve non-negative water depth which is 
suggested by Liang et al. [12] is adopted in present 
study. The ZM bed elevation at the midpoint of the 
considered edge is calculated as: 

 

𝑍𝑀 = 𝑚𝑖𝑛(𝑚𝑎𝑥(�̊�𝐿
𝑀, �̊�𝑅

𝑀), �̊�𝐿
𝑀)    (14) 

 
Then the non-negative water depth values on 

both sides are reconstructed as: 
 

ℎ𝑅
𝑀 = 𝑚𝑎𝑥(0, �̊�𝑅

𝑀 − 𝑍𝑏
𝑀) − 𝑚𝑎𝑥(0, �̊�𝑏𝑅

𝑀 −
𝑍𝑏

𝑀),   ℎ𝐿
𝑀 = �̊�𝐿

𝑀 − 𝑍𝑀 (15) 
 
The discharges at M are in turn reconstructed as: 

 
2.5. Treatment of the source term 
2.5.1. Well-balanced treatment of the slope source 
term 

Hou et al. [8] developed a novel slope source 
term treatment which is devised to transform the 
slope source of a cell into a flux form, which can strictly 
preserve the well-balanced property and can be 
conveniently employed with second order or even 
higher order schemes. In addition, this treatment is 
able to handle the occurrence of wet-dry fronts, in 
conjunction with the non-negative water depth 
reconstruction. The vector of source term Fnb(U)ik at 
the considered faces k in cell i becomes 

 

𝐹𝑛𝑏(𝑈)𝑖𝑘 = [

0
−𝑛𝑥𝑔(ℎ𝐿

𝑀 + ℎ𝑖)(𝑍𝑀 − 𝑍𝑖)/2

−𝑛𝑦𝑔(ℎ𝐿
𝑀 + ℎ𝑖)(𝑍𝑀 − 𝑍𝑖)/2

] (16) 

 
where 𝑍𝑀 and ℎ𝐿

𝑀 are obtained by spatial linear 
reconstruction. 

 
2.5.2. Calculation of derivatives in source terms 

The approach adopted by Mohammadian et al., 
[13] is used to calculate the unlimited gradient of 
variables. A similar approach may be also applied to 

calculate the diffusive terms
∂

∂x
(hνt

∂u

∂x
), 

∂

∂y
(hνt

∂u

∂y
), 

∂

∂x
(hνt

∂v

∂x
) and 

∂

∂y
(hνt

∂v

∂y
).  

 
2.5.3. Friction source term treatment 

In current study, a simple semi-implicit 
treatment suggested by Yoon et al. [18] is adopted to 
deal with very shallow water depth.      

 

(
𝑆𝑓

𝑥

𝑆𝑓
𝑦) = (

[𝑛𝑏
2ℎ−7/3√𝑢2 + 𝑣2]

𝑛
(𝑢ℎ)𝑛+1

[𝑛𝑏
2ℎ−7/3√𝑢2 + 𝑣2𝑔ℎ𝑡]𝑛(𝑣ℎ)𝑛+1

)    (17) 

 
in which the superscript n denotes the time step. 
 
2.6. Time integration and CFL condition 

 In order to obtain the second-order accuracy in 
time and retain the stability of the model, the two-
stage explicit TVD Runge-Kutta method is applied in 
current study. The time step is limited by the Courant-
Friedrichs-Lewy (CFL) condition.  
      
2.7. Treatment of wetting and drying fronts 

 Wetting and drying fronts need to be specially 
treated to retain the numerical stability when very tiny 
water depth is introduced. In current model, a scheme 
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of wetting and drying treatment is proposed which can 
be summarized as:  

1. A tolerance water depth 𝜀 is introduced to 
classify the wet and dry cell. In present model, 𝜀 =
10−6 𝑚 is used. In the dry cell, first order 
reconstruction will be applied to maintain the 
numerical stability.  

2. For dry cell with ℎ𝑖
𝑛 < 𝜀, only continuity 

equation will be solved to deal with potentially 
wetting.  

3. To deal with the cell-drying, if a cell with 
ℎ𝑖

𝑛+1 > 𝜀, it’s treated as completely dry cell in next 
time-step and all hydraulic parameters are set to zero 
in this cell.  
 
3. Numerical Tests 
3.1. Quiescent water around a hump with 
sediment deposition 

 The first test is applied to verify the well-
balanced property preserving of present model 
involving wet-dry interfaces. To implement this test, 
the elevation of a hump on flat bed is defined as:  

 

𝑍(𝑥, 𝑦) = 𝑚𝑎𝑥{0,2 − 0.32[(𝑥 − 4)2 +
(𝑦 − 4)2]}    (18) 
 

The hump is located at the center of a 8m×8m 
computational domain, the height of the bump is 2m. A 
quiescent lake around the dump is defined with initial 
water surface elevation of 1m, so the test could involve 
the wet-dry interface. Fig. 1 shows the 3d views of 
simulated bed profile and still water surface at t=50s. 
The undisturbed water surfaces are observed through 
the whole simulating process.  

 

 
Figure 1. Quiescent lake around a hump with initial 

sediment concentration and wet-dry boundaries at t=50s  
 

3.2. 2-D shorelines tracking in a parabolic bowl 
This test is adopted here to investigate the 

hydraulic model and the accuracy of tracking the 

wetting and drying fronts. The bottom topography 
with the center (x0,y0) is defined as:  

𝑍(𝑥, 𝑦) = −ℎ0 [1 −
(𝑥−𝑥0)2+(𝑦−𝑦0)2

𝑎2 ]    (19) 

 
in which h0 is the water depth at the center of the 
domain, a is the distance from the center to the edge of 
the shoreline. Since the topography is set to be 
frictionless in this test, as described in [15], the 
periodic analytical solution of the evolutions of surface 
elevation, water depth and velocities can be computed 
using following equations:  
 

𝜂(𝑥, 𝑦, 𝑡) =
𝜎ℎ0

𝑎2
[2𝑥𝑐𝑜𝑠(𝜔𝑡) + 2𝑦𝑠𝑖𝑛(𝜔𝑡) − 𝜎]    (20) 

 
ℎ(𝑥, 𝑦, 𝑡) = 𝑚𝑎𝑥[0, 𝜂(𝑥, 𝑦, 𝑡) − 𝑍(𝑥, 𝑦)],
𝑢(𝑡) = −𝜔𝜎𝑠𝑖𝑛(𝜔𝑡), 𝑣(𝑡) = 𝜔𝜎𝑐𝑜𝑠(𝜔𝑡)    
 (21) 

 
in which, 𝜎 is a constant that determines the amplitude 

of the motion; 𝜔 = √2𝑔ℎ0/𝑎2 is the frequency of the 
pool’s circulation around the center of the bowl.  

In this test for current model, a 4m×4m domain 
is chosen, which is discretized to 14836 triangular 
cells, as shown in Fig. 2. The four boundaries are set to 
wall-boundary. According to the dimension, the 
parameters ℎ0=0.1 m, 𝑎=1.0m and 𝜎=0.5m. The initial 
flow states are defined by Eqs. (20)  and Eqs. (21) at 
t=0s.  

 

 
Figure 2. Simulated grids and bed profile of a 

parabolic bowl 

 
 Fig. 3 shows the comparison between simulated 

water surface profiles and analytical solutions at t=3T 
and 3.5T, respectively, where T represents the 
circulation period of the pool. It can be observed that 
the calculated free surface from current model agrees 
well with the analytical solution, no obvious distortion 
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is observed near the shorelines, the treatment of 
wetting and drying boundaries successfully handle the 
task of tracking moving wet-dry fronts. Fig. 4 shows 
the velocity of circulating pool at t=3.5T, no unphysical 

high velocity is observed near the shoreline where 
very shallow water exists. The around area preserve 
zero velocity when it becomes dry. 
 

 

 
Figure 3. Simulated shoreline profiles and analytical solution at different times  

 
 

 
Figure 4. Velocity field of circulating pool at t=3.5T 

 

3.3. 2-D partially dam-break flow on initially dry 
bed 

For examining the numerical performance of the 
present scheme, a 2-d dam break problem with rapid 
varying unsteady flow is chosen as test cases. This test 
case is firstly introduced by Fennema et al. [7] in a 
numerical method study, which has been widely used 
by many researchers. The original case is mostly 
applied on an initially wet and fixed bed. It is adopted 
here for the aim of testing the capacity of current 
model to simulate the front wave propagation over an 
initial dry bed with wet-dry interface tracking, with a 
particular attention to the 2D aspects of the flow 
motion; and the model performance in prediction of 
fast erosion under high energetic flow in large scale. 

The modeling domain area is a 200m×200m basin 
over a flat and dry bed. A 10m-thick dam splits the 
basin into two equal-sized regions. The water depths 
are 10m and 0m on the left and right sides of the dam, 
respectively. At t = 0s, a 75m wide breach centered at 
y = 125m is assumed to form instantaneously. The 
duration of the simulation is 12s. The initial velocity of 
the whole modeling area is 0m/s and the outlet 
boundary at x = 200m is specified with a free out flow 
boundary condition, meanwhile all other boundaries 
are set to be standard wall condition. The simulating 
domain is discretized into 6806 triangular cells, as 
shown in Fig. 5. 

 

 
Figure 5. Triangular meshes used for the 2-D dam-break 

test 

 
 



Avestia Publishing 
Journal of Fluid Flow, Heat and Mass Transfer 

Volume 1, Year 2014 

Journal ISSN: 2368-6111 

DOI: 10.11159/jffhmt.2014.005 

 

36 

 
Figure 6. Wave front propagation of dam break flow, velocity field and contours of water depth at different times 

Fig.6 shows 3D views of the water front-wave 
propagations and predicted bed erosion at varying 
times (first row). It can be seen that a shock wave 
forms and propagates downstream and a depression 
wave spreads upstream during the simulating process, 
no unphysical high velocities and oscillations are 
generated at the front-wave locations where wetting 
and drying interfaces are existing. The velocity field 
with contour of water depth is present in second row.  
 
4. Conclusion 
       A robust two-dimensional numerical model for 
dam-break flow with wetting and drying is proposed 
in current study, based on finite volume method using 
unstructured triangular grids. The Central-upwind 
scheme can accurately estimate the convective fluxes. 
Current model can strictly preserve the well-balanced 
property with vector-form discretization of slope 
source term in conjunction with nonnegative water 
depth reconstruction. The semi-implicit method on 
friction slope term maintains the stability of present 
model. The adopted wetting and drying scheme could 
efficiently track the wet-dry fronts. The testing results 
confirm the capacity and accuracy of current model in 

dealing with various cases of dam-break flow over 
irregular bed in practical conditions. 
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