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Abstract- This paper reports an analysis of natural convection 
and entropy generation inside a square porous enclosure with 
sinusoidal temperature variation on the side walls. The 
natural convection heat transfer is calculated by solving 
numerically the mass, momentum, and energy conservation 
equations. Moreover, the generation of entropy is discussed in 
terms of heat transfer irreversibility and fluid friction 
irreversibility. As thermal boundary conditions, the two 
horizontal walls are maintained adiabatic. Meanwhile, both 
symmetric and anti-symmetric sinusoidal temperature 
distributions are applied to the side walls and the 
corresponding results are compared. It is found that, although 
the case with anti-symmetric temperature boundary 
conditions achieves higher heat transfer, it suffers from high 
entropy generation rate. 
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Nomenclature 

pc constant pressure specific heat, [J/kg.K] 

Ec Eckert number, [-] 
FFI fluid friction irreversibility, [-] 
g gravitational acceleration, [m/s2] 
HTI heat transfer irreversibility, [-] 
K permeability, [m2] 
L enclosure height, [m] 

N
local dimensionless entropy generation 
rate, [-] 

globalN global dimensionless entropy 
generation rate, [-] 

Nu local Nusselt number, [-] 

Nu average Nusselt number, [-] 

p pressure, [Pa] 
Ra Darcy-modified Rayleigh Number, [-] 
T temperature, [K] 
𝑇𝑟𝑒𝑓 reference temperature, [K] 

T temperature difference, [K] 

v,u velocity components in x and y 
directions, [m/s] 

y,x Cartesian coordinates, [m] 
Y,X dimensionless coordinates, [-] 

Greek symbols 
 effective thermal diffusivity, [m2/s]
 volumetric expansion coefficient, [K-1]
 kinematic viscosity, [m2/s]
 density, [kg/m3]
 stream function, [m2/s]
 dimensionless stream function, [-]
 dimensionless temperature, [-]


dimensionless temperature 
difference, (=∆𝑇/𝑇𝑟𝑒𝑓), [-]

1. Introduction
As a consequence of diverse applications of 

porous media in the construction of industrial devices 
ranging from electrical heaters [1] to solar collectors 
[2], considerable interest has been drawn to study flow 
as well as thermal fields inside these materials. One of 
the issues in this field goes back to the development of 
natural convective flows inside enclosures filled with a 
fluid-saturated porous medium. This problem occurs 
in numerous practical applications such as thermal 
insulation technology, ground water hydrology, 
petroleum reservoir modeling, and storage of 
radioactive nuclear waste materials. Consequently, it is 
not surprising to see considerable interest on the 
analysis of natural convection inside porous 
enclosures. Nevertheless, previous works have mainly 
been concentrated on enclosures with constant wall 
temperatures and those with non-uniform 
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temperature boundary conditions have received less 
attention in spite of their significance.  

In an enclosure with constant wall temperatures, 
finite discontinuities in temperature distribution 
appear at the edges. The discontinuities can be 
removed if one chooses non-uniform temperature 
distributions along the walls. Moreover, by employing 
non-uniform heating/cooling, the establishment of 
flow and thermal fields as well heat transfer 
characteristics inside the enclosure can be controlled.   

Saeid [3] has analyzed natural convection inside 
a porous enclosure with partially-heated bottom wall, 
cooled top wall, and adiabatic vertical walls. He 
demonstrated that, average Nusselt number enhances 
with the length of heat source and with the amplitude 
of temperature variation. Basak et al. [4] have 
investigated a porous enclosure with uniformly/non-
uniformly heated bottom wall, adiabatic top wall, and 
constant temperature on the cold vertical walls. 
Concerning their results, they concluded that, non-
uniform heating of the bottom wall provides higher 
heat transfer rates at the central region of the bottom 
wall whereas the corresponding average Nusselt 
number is lower. Later, they observed similar trend in 
an enclosure with uniformly/non-uniformly heated 
bottom and left walls, adiabatic top wall, and constant 
temperature right wall [5]. Sathiyamoorthy et al. [6] 
have simulated a porous enclosure wherein the bottom 
wall was heated uniformly, the left wall was linearly 
heated, the right wall was heated linearly or cooled, 
and the top wall was thermally insulated. Oztop [7] has 
discussed natural convection in a partially-cooled 
inclined porous enclosure with one side wall at 
constant hot temperature, one adjacent wall being 
partially-cooled, and the remaining ones adiabatic. 
Varol et al. [8] have studied an enclosure with a 
sinusoidal temperature profile on the bottom wall 
wherein other walls were thermally insulated. They 
demonstrated that, heat transfer rate increases with 
increase in the amplitude of the sinusoidal 
temperature function and decreases with increasing 
aspect ratio of the enclosure. More recently, Yedder 
and Erchiqui [9] have investigated a tall porous 
enclosure with uniformly heated bottom wall, 
adiabatic top wall, and temperature profile on the cold 
vertical walls.  

All of the aforesaid studies are the First-Law (of 
thermodynamics) analyses of non-uniformly 
heated/cooled porous enclosures. Currently, Second-
Law based discussions are using to study entropy 
generation. This can clarify the significance of 
irreversibility related to heat transfer, fluid friction, 
and other non-ideal processes within thermal systems 
and enables us to find thermal boundary conditions 

whereby minimum irreversibility is produced. 
Consequently, attention needs to be paid to the 
problem of entropy generation in porous enclosures 
with non-uniform wall temperatures. In spite of that, to 
the author’s knowledge, the subject has not been 
investigated extensively.  

Zahmatkesh [10] has analyzed the importance of 
thermal boundary conditions of the heated/cooled 
walls in heat transfer as well as entropy generation 
inside of a porous enclosure with heated bottom wall, 
cooled vertical walls, and adiabatic top wall. For this 
purpose, he undertook both heating and cooling 
uniformly and non-uniformly and compared the 
correspond results. Zahmatkesh [10] demonstrated 
that, uniform heating/cooling achieves the highest 
heat transfer rates whereas non-uniform cooling 
suffers from the lowest. In spite of that, he found that, 
entropy generation is likely to be the highest for 
uniform heating/cooling and the lowest for non-
uniform heating. A further analysis of this subject has 
been recently reported by Basak et al. [11]. More 
recently, Zahmatkesh has discussed entropy 
generation during natural convection in rectangular 
porous enclosures with three adiabatic walls [12] as 
well as oblique enclosures [13].  

To continue this effort, the present study 
investigates the development of flow, heat transfer, 
and entropy generation inside a square porous 
enclosure that is depicted in Fig. 1.  

 

 
Figure 1. Physical model of the 2D porous enclosure 

 
Here, the horizontal walls are maintained adiabatic 
while symmetric/anti-symmetric sinusoidal 
temperature distributions are applied to the side walls. 
The governing equations are solved numerically. 
Thereafter, the generation of entropy is discussed in 
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terms of heat transfer irreversibility as well as fluid 
friction irreversibility. 
 
2. Mathematical Formulation 

In this study, a 2D laminar flow model is utilized. 
The fluid is concerned incompressible and Newtonian. 
Meanwhile, all physical properties are assumed to be 
constant except the density in the buoyancy term for 
which the Oberbeck-Boussinesq approximation is 
invoked. Another important assumption is that the 
local thermal equilibrium is valid, i.e., the temperature 
of the fluid phase is equal to the temperature of the 
solid phase everywhere in the porous enclosure. 
During the current analysis, the contribution of 
thermal radiation is neglected and the Darcy’s model is 
utilized for flow prediction. Under these assumptions, 
the equations of continuity, momentum, and energy 
are reduced to the following dimensionless form in 
terms of stream function ( ) and temperature ( ) 
[14] 
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Here, the dimensionless variables are defined as 
follows. 
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The corresponding boundary conditions are 
 

0X  and 10 Y  : 0  and )Ysin(  2 , (4a) 

1X  and 10 Y : 0  and )Ysin(  2 , (4b) 

10  X  and 0Y : 0  and 0 Y/ , (4c) 
10  X  and 1Y : 

 
0  and 0 Y/ . (4d) 

Here, the use of )Ysin(  2  for the right wall yields 

symmetric sinusoidal temperature distributions on the 
side walls. Nevertheless, anti-symmetric sinusoidal 
thermal boundary conditions will be resulted if one 
takes )Ysin(  2  therein. 

 
3. Entropy Generation 

For a porous media that follows the Darcy’s law, 
the dimensionless rate of entropy generation can be 
expressed as [15] 
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with Ec  being the Eckert number, Pr  being the 
Prandtl number, and   being the dimensionless 

temperature difference (i.e., CT/T ). Here, the first 

term of Eq. (5) is due to the transfer of heat and is 
referred to as Heat Transfer Irreversibility ( HTI ) 
while the second term represents the contribution of 
Fluid Friction Irreversibility ( FFI ). Thereby 
 

FFIHTI)Y,X(N  . (6) 

  
The global entropy generation rate is obtained 

through integration of the local distribution of entropy 
generation rate as 
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4. Solution Procedure 

The dimensionless coupled partial differential 
equations in conjunction with the aforesaid boundary 
conditions are solved using a control-volume based 
computational procedure [16]. For this purpose, a 

200200  non-uniform grid is utilized, based on a grid 
refinement study. The algebraic equations are solved 
by a line-by-line iterative procedure. The method 
sweeps the domain of integration along the x and y 
axes and uses Tri-Diagonal Matrix Algorithm (TDMA) 
iteration to solve the system of equations. The 
convergence criterion employed is the following 
condition 
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where   stands for either   or   and n  denotes the 

iteration.  
As the numerical values of   and   become 

available from the converged solution, the magnitudes 
of the local and the average Nusselt numbers at the 
non-adiabatic walls are calculated from the following 
expressions. 

 



  

 

26 

 

10,XX
Nu

















and  dYNuNu

___


1

0

. (9) 

  
It is noteworthy that, during the current 

computations, the following parameters are 
maintained constant.  

 

100Ra , 0010= .τPr/Ec , 10T K, 𝑇𝑟𝑒𝑓 =

300K. 
(10) 

  
5. Simulation Results 

Two types of analysis are presented in this 
section. The first one presents a validation for the 
mathematical model as well as the employed solution 
procedure. The second analysis, however, shows the 
contribution of this study that is associated with heat 
transfer process and entropy generation 
characteristics in the natural convective flow inside a 
porous enclosure with symmetric/anti-symmetric 
sinusoidal temperature variations on the side walls. 
 
5.1. Numerical Validation 

The present numerical implementation is 
validated by reproducing a porous enclosure with 
uniformly heated/cooled side walls and insulated 
horizontal walls. Accordingly, numerical values of the 
average Nusselt number in the side walls are compared 
with previously published works in Table 1.  

 
Table 1. Comparison of the current average Nusselt number 

with previously published works 

Authors Nu 

Saeid and Pop [17] 3.002 
Misirlioglu et al. [18] 3.05 
Badruddin et al. [19] 3.2005 
Present simulation 3.068 

 
As can be observed, current results bear a strong 
resemblance to the previously published works. 
Moreover, contour plots of stream function and 
temperature are almost the same as those reported in 
open literature. They are not, however, presented here 
for the sake of brevity. This provides confidence to the 
developed code for further studies. Consequently, in 
what follows, it will be utilized to analyze the 
development of flow and thermal fields as well as 
entropy generation characteristics in the buoyancy-
driven flow inside the porous enclosure depicted in 
Fig. 1. 
 
5.2. Flow and Thermal Fields 

In what concerns the dimensionless 
distributions of stream function and temperature, 

simulation results for the two cases with symmetric 
and anti-symmetric temperature boundary conditions 
on the side walls are presented in Figs. 2 and 3.  

 

 
a) Stream function,   

 

 
b) Temperature,   

Figure 2. Distributions of streamlines and isothermal lines 
for the symmetric temperature BC’s 

 

 
a) Stream function,   

 

 
b) Temperature,   

Figure 3. Distributions of streamlines and isothermal lines 
for the anti-symmetric temperature BC’s 
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Dependence of flow and thermal fields on the 
wall condition is obvious. It can be witnessed that, 
when anti-symmetric sinusoidal temperature 
distributions are applied to the side walls, the flow is 
characterized by two circulation cells generated in 
opposite directions inside the enclosure. Notice also 
that, under the symmetric temperature boundary 
conditions, four circulation cells appear there. 
Moreover, the figures demonstrates that if one applied 
symmetric temperature distributions to the side walls, 
the contour plots of stream function and temperature 
becomes more symmetric about 50.Y   plane. 
Meanwhile, comparing the magnitudes of stream 
function in the two cases indicates that the case with 
anti-symmetric boundary conditions results in more 
intense streamlines. 

Distributions of magnitudes of the local Nusselt 
number along the right and left walls for the current 
cases are depicted in Figs. 4 and 5, respectively.  

 

 
Figure 4. Distributions of Nu  along the right wall 

 

 
Figure 5. Distributions of Nu  along the left wall 

 

Remarkable variations can be observed in the values of 
the local Nusselt number. This is not surprising since 
we have applied sinusoidal temperature distributions 
to the side walls. It can also be witnessed that, the 
discrepancies that appear between the results of the 
two cases is much lower at the left wall. This occurs 
since the current cases have identical wall conditions 
on the left side. 

Figure 6 plots the distributions of dimensionless 
temperature along the adiabatic walls. Again, results of 
the symmetric temperature boundary conditions are 
distinct from those of the anti-symmetric case. Notice 
also that, when symmetric temperature distributions 
are applied, the temperature varies more uniformly 
along the top and bottom walls.  

 

 
Figure 6. Distributions of dimensionless temperature along 

the adiabatic walls 

 
The overall effects of the two cases upon heat 

transfer rates are compared in Table 2 wherein the 
numerical values of the average Nusselt number at the 
side walls are presented. As expected from the local 
distributions of the Nusselt number (i.e., Figs. 4 and 5), 
the case with anti-symmetric temperature boundary 
conditions achieves higher heat transfer rate. 

 
Table 2. Effect of temperature boundary conditions on heat 

transfer and entropy generation. 

Case Nu  globalN  

Symmetric BC’s 4.035 9.713 
Anti-symmetric BC’s 5.830 13.031 

 
5.3. Entropy generation characteristics 

Contour plots of fluid friction irreversibility and 
heat transfer irreversibility for the current cases are 
displayed in Figs. 7 and 8.  
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a) Fluid friction irreversibility, FFI 

 

 
b) Heat transfer irreversibility, HTI 

Figure 7. Distributions of FFI and HTI for the symmetric 
temperature BC’s 

 

 
a) Fluid friction irreversibility, FFI 

 

 
b) Heat transfer irreversibility, HTI 

Figure 8. Distributions of FFI and HTI for the anti-
symmetric temperature BC’s 

 

It is clear that, the side walls act as strong 
concentrators of FFI and HTI. This occurs due to higher 
values of near wall velocity components and 
temperature gradients there. Notice also that, a 
significant portion of the enclosure acts as an ideal 
region for entropy production wherein both fluid 
friction irreversibility and heat transfer irreversibility 
are zero or negligible.     

The aforesaid variations of fluid friction 
irreversibility and heat transfer irreversibility make 
the distribution of local entropy generation rate inside 
the enclosure as depicted in Fig 9. Dependence of 
entropy generation on the wall condition is obvious. To 
demonstrate this effect further, numerical values of the 
global entropy generation rate for the two cases are 
illustrated in Table 2. It can be witnessed that, although 
the case with anti-symmetric temperature boundary 
conditions achieves higher heat transfer, it suffers 
from high entropy generation rate. 

 

 
a) Symmetric temperature BC’s 

 

 
b) Anti-symmetric temperature BC’s 

Figure 9. Distributions of local entropy generation rate 

 
6. Conclusion 

Heat transfer process and entropy generation 
characteristics inside a square porous enclosure with 
symmetric and anti-symmetric sinusoidal temperature 
variations on the side walls were simulated and 
discussed in this study. Results are presented in terms 
of streamlines, isothermal lines, and iso-entropy 
generation lines, as well as distributions of fluid 
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friction irreversibility and heat transfer irreversibility. 
Moreover, variation of the average Nusselt number 
along the side walls and temperature distribution 
along the adiabatic walls are analyzed. Based on the 
presented results, it was concluded that, although the 
case with anti-symmetric temperature boundary 
conditions achieves higher heat transfer, it suffers 
from high entropy generation rate. 
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