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Abstract - We consider a boundary control problem arising in the
study of the dynamics of an arterial system which consists of one
arterial segment (modeling the aorta in the cardiovascular system)
coupled at the inflow with a pressurized chamber (modeling the
left ventricle) via a valve. The opening and closing of the valve is
dynamically determined by the pressure difference between the left
ventricular and aortic pressures. Mathematically, this is described
by a 1D system of coupled PDEs for the pressure and flow in the
arterial segment, with a Dirichlet boundary condition imposed on
the flow (when valve is closed) or on the pressure (when valve is
open). At the outflow we impose a peripheral resistance model,
which leads to a non-homogeneous Dirichlet condition. A numeri-
cal scheme based on the discontinuous Galerkin method is used to
approximate the solution of the resulting system. We then use this
methodology to simulate the heart rate variability observed in real
physiological systems, by optimizing the timing of the heartbeat
and the peripheral resistance, modeled using a terminal reflection
coefficient, with the goal of achieving a prescribed mean pressure
in the system.

Keywords: Boundary control, Aortic valve, Arterial pressure,
Dispersion.
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Nomenclature
In this paper, the following notations will be used:

A(x, t) cross-section area
η(x, t) wall displacement
r(x, t) radius of the artery
u(x, t) average velocity
P(x, t) hydrodynamic pressure
Pext(t) external pressure
PLV (t) left ventricular pressure
Pre f reference pressure
Pavg mean pressure

f (x, t) friction force
β coefficient of elasticity
h wall thickness
µ blood viscosity
ρ blood density

ρω density of the wall
E Young modulus

HR heart rate
τ duration of the systole

Tpulse duration of a heart beat
Wf forward characteristic wave
Wb backward characteristic wave
Rt reflection coefficient
M length of the artery

The values of the parameters used during the simulations
are reported in section 4.

1. Introduction
The cardiovascular system transports oxygen and nu-

trients to all the tissues of the body, from where it removes
carbon dioxide and other harmful waste products of cell
metabolism. From a physical point of view, the system con-
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sists of a pump that propels a viscous liquid (the blood)
through a network of flexible tubes. The heart provides en-
ergy to move blood through the circulatory system and is one
key component in the complex control mechanism of main-
taining pressure in the vascular system ([20]). The aorta is
the main artery originating from the left ventricle and then
bifurcates to other arteries, and is identified by several seg-
ments (ascending, thoracic, abdominal). There are several
features of the aorta that have an effect on the blood flow,
such as the tapering of the aorta or the fact that ascend-
ing aorta is arched (curved). Still, the functionality of the
aorta, considered as a single segment, is worth exploring
from a modeling perspective, in particular in relationship to
the presence of the aortic valve.

There has been extensive literature describing the dy-
namics of the vascular network coupled with a heart model
(e.g. [1], [7], [8], [9], [10], [16], [17]), the majority focus-
ing on either a detailed description of the four chambers of
the heart or on the spatial dynamics in the aorta, but not on
both. In fact, there seem to be no studies addressing the heart
rate variability based on the detailed spatial description of the
pressure and flow patterns in the aorta. More broadly, theory
and applications of optimization and control in spatial net-
works have been extensively developed in literature, and sev-
eral numerical approaches have been successfully applied to
telecommunications, transportation or supply networks ([5],
[6], [15]).

In this paper we propose to capture through simulation
and optimization the dynamics of the pressure and flow in
the aorta as well as the heart rate variability. We take into
account the elasticity of the aorta, considered as a single ves-
sel, together with an aortic valve model at the inflow and a
peripheral resistance model at the outflow (Section 2). We
develop a numerical scheme to find approximate solutions to
the system (Section 3) and then we describe and simulate a
control mechanism for maintaining constant mean pressure
in the aorta by allowing for variable heart rate and periph-
eral resistance (Section 4). Finally, we propose a spectral
discretization of the optimal control problem to simulate
this phenomenon (Section 5). The novelty of this paper is
in considering the boundary control problem for a 1D PDE
coupled with a valve model, which translates to a Dirichlet
boundary condition for pressure during systole and for flow
during diastole. The switch between the two type of bound-
ary conditions is not prescribed a priori in time, but rather it
is a function of the computed solution in time. This make the
synthesis of the optimal control to be a non-standard prob-
lem, which is difficult to solve theoretically so we propose
instead an effective numerical approach.

2. Mathematical Model
We start with the standard hyperbolic system (see [2],

[14], [21]) which models cross-section area A(x, t) and aver-
age velocity u(x, t) in the spatial domain:

∂A
∂ t

+
∂ (Au)

∂x
= 0, (1)

∂u
∂ t

+u
∂u
∂x

+
1
ρ

∂P
∂x

= f , (2)

where f = f (x, t) is a friction force, usually taken to be
f = −22µπu/A, µ is the fluid viscosity, and P(x, t) is the
hydrodynamic pressure. Here we include the inertial ef-
fects of the wall motion, described by the wall displacement
η = η(x, t):

η = r− r0 =
1√
π
(
√

A−
√

A0). (3)

The fluid structure interaction is modeled using inertial
forces, which gives the pressure law (see [3], [7])

P = Pext +
β

r2
0

η +ρωh
∂ 2η

∂ t2 = (4)

= Pext +
β

A0
(
√

A−
√

A0)+m
∂ 2A
∂ t2 ,

where r(x, t) is the radius, r0 = r(x,0), A0 = A(x,0), Pext is
the external pressure, β = E

1−σ2 h, σ is the Poisson ratio (usu-
ally taken to be σ = 1

2 ), E is Young modulus, h is the wall
thickness, m = ρω h

2
√

πA0
, ρω is the density of the wall.

The relation (4) was obtained by putting:

η ' A−A0

2
√

πA0
.

This leads to the following Boussinesq system:{
ηt +ηxu+ 1

2(η + r0)ux = 0,
ut +uux +

Eh
ρr2

0
ηx +

ρω h
ρ

ηxtt = f , (5)

where ρ is the blood density. Considering the relation ηt =
−1

2 r0ux, we get the system:{
ηt +ηxu+ 1

2(η + r0)ux = 0,
ut +uux +

Eh
ρr2

0
ηx− ρω hr0

2ρ
uxxt = f , (6)
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or, rearranging terms in u,
ηt +ηxu+ 1

2(η + r0)ux = 0,(
u− ρω hr0

2ρ
uxx

)
t
+ 1

2(u
2)x +

Eh
ρr2

0
ηx = f .

(7)

If we use cross-section area instead of the wall displacement,
we have

At +(Au)x = 0,(
u− ρω hr0

2ρ
uxx

)
t
+
(

1
2 u2 + Eh

ρr2
0

(√
A−
√

A0

))
x
= f ,

(8)

which can be written in compact form:

∂U
∂ t

+
∂F(U)

∂x
= S(U), (9)

where

U =

(
A
v

)
, F(U) =

(
Au

1
2 u2 + Eh

ρr2
0

(√
A−
√

A0

) )
,

(10)

S(U) =

(
0
f

)
,

and u = D−1v is the solution of the boundary value problem

u− ρωhr0

2ρ
uxx = v, (11)

together with boundary conditions that are indicated below.

Inflow conditions (at x = 0) are implemented using a
valve model, which mimics the real behavior of the physio-
logical system. The aortic valve is one of the two semilunar
valves of the heart and lies between the left ventricle and the
aorta. It permits the flow of the blood from the left ventricle
of the heart to the aorta. During ventricular systole, pressure
rises in the left ventricle. When the pressure in the left ven-
tricle rises above the pressure in the aorta, the aortic valve
opens, allowing blood to exit the left ventricle into the aorta.
When ventricular systole ends, pressure in the left ventricle
rapidly drops. When the pressure in the left ventricle de-
creases below the aortic pressure, the aortic valve closes, and
remains closed until the next heart beat. The opening and
closing of valve is determined by the pressure difference be-
tween the left ventricle (PLV ) and the aortic pressure. More
specifically, the valve opens when

P(0, t)≤ PLV (t),

in which case the pressure at the inflow gets prescribed

P(0, t) = PLV (t),

and it closes when the velocity becomes negative, in which
case the velocity at the inflow is prescribed to be zero:

u(0, t) = 0.

u(0, t) = 0, if PLV (t)< P(0, t)

P(0, t) = PLV (t), if u(0, t)> 0

Figure 1. Aortic pressure (red) and left ventricular pressure (blue)
during systole and diastole.

In the simulations, the left ventricular pressure is pre-
scribed equal to

PLV (t) = Pext +3.75
HR
75

10−4 sin
πt
τ
,

with HR representing the heart rate and τ the duration of the
systole, taken to be a quarter of the heart beat (τ = 15/HR).
This model accounts for the fact that peak amplitude of the
left ventricular pressure depends on the heart rate.

As terminal condition, we have used a model with ter-
minal reflection coefficient Rt , (see [2]), which is based on
the assumption that Wb is proportional to Wf :

Wb =−RtWf ,

where −1 ≤ Rt ≤ 1. Here Wb is the backward characteristic
and Wf is the forward characteristic of the hyperbolic system
(9):

Wf ,b = u± (c(A)− c(A0)) , c(A) =

√
8β

ρA0
A1/4.

Note that Rt = 1 corresponds to u = 0, which means the out-
flow is completely blocked, while Rt = −1 corresponds to
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A = A0. For general values of Rt ∈ [−1,1] the boundary con-
ditions is

u =
1−Rt

1+Rt

√
8β

ρA0

(
A1/4−A1/4

0

)
.

This is a nonlinear relation between the two components
(area and velocity) of the system of PDEs.

We note that the reduced 1D model (1)–(2) can be de-
rived ([21]) from the full 3D fluid flow equations under both
the assumption of newtonian or non-newtonian nature for the
fluid, the difference being in the nonlinearity of the velocity.
Here we followed the standard non-newtonian assumption
of a blunt velocity profile across the vessel wall, which is
typical for blood flow in large arteries. Alternative (and
more realistic) models for the rheology of the blood (such as
Casson model, [18], [23], which assumes a nonlinear stress
strain relation for the fluid) will lead to different expressions
for the friction forces in the reduced model and to different
nonlinear terms for the momentum equation. While these
models are worth considering for a more realistic mathemat-
ical model (see also comments in the conclusion section),
for the scope of the present paper it is sufficient to stay with
simplest model for the fluid and fluid structure interactions,
since we do not expect significantly different qualitative con-
clusions if we were to incorporate other models.

3. Numerical Discretization
In order to solve the system (9)–(11) on Ω = [0,L] we

use a discontinuous Galerkin scheme for the first equation
and a spectral method for the second one.
We write the weak formulation of the problem, approximate
U(x, t) with its discretized expansion Uδ (x, t) and integrate
twice by part (for details see [21]), so we get:(

∂Uδ

∂ t
,Φδ

)
Ω

+

(
∂F(Uδ )

∂x
,Φδ

)
Ω

+

+[(Fu−F(Uδ ))·Φδ ]L0 = (S(Uδ ),Φδ )Ω. (12)

To simplify the method, we have mapped each elemental re-
gion onto the standard element Ωst = {ξ ∈R :−1≤ ξ ≤ 1}.
This mapping is defined as

χ(ξ ) = M
1+ξ

2
, ξ ∈Ωst ,

and its inverse is given by

ξ = χ
−1(x) = 2

x
M
−1, x ∈Ω.

We selected as expansion basis the Legendre polynomials
Lk(ξ ), with k the polynomial order, because they are orthog-
onal with respect to the product inner product of L2. In this
way, the solution is expanded on Ω as

Uδ (χ(ξ ), t) =
K

∑
k=0

Lk(ξ )Ûk(t), (13)

with Ûk(t) the time-varying coefficients of the expansion.
We have chosen Legendre points (which are the zeros of Leg-
endre polynomials) as collocation points.
Replacing (13) in (12) and letting Φδ = Uδ , we obtain the
following system of 2(K + 1) differential equations to be
solved:

dÛk
i

dt
= F k

i (U
δ ), k = 0, ...,K, i = 1,2,

where Ûk
i , i = 1,2, are each of the two components of Ûk(t)

and

F k
i (U

δ ) =−
(

∂Fi

∂x
,Lk

)
Ω

− 2
M
[(Fu

i −Fi(Uδ ))(Lk ◦ξ )]M0 +

+(Si(Uδ ),Lk)Ω,

with M as the length of the edge. The method is
completed with a second-order Adams-Bashforth time-
integration scheme:(

Ûk
i

)n+1
=
(

Ûk
i

)n
+

3∆t
2

F
(
(Uδ )n

)
− ∆t

2
F
(
(Uδ )n−1

)
,

k = 0, ...,K, i = 1,2,

in which ∆t is the time step and n the number of every time
step. To calculate the integrals we use a Gauss quadrature
formula of order q≥ K +1.

The upwinded fluxes Fu are computed solving a Rie-
mann problem that takes into account the characteristic in-
formation moving away. At a time t, each interface separates
two constant states, (AL,UL) and (AR,UR), and we need to
determine the two upwinded states, (Au

L,U
u
L ) and (Au

R,U
u
R),

originated on each side of interface at time t +∆t. To do this,
the following equations are required:

Wf (AL,UL) =Wf (Au
L,U

u
L ),

Wb(AR,UR) =Wb(Au
R,U

u
R),

Au
LUu

L = Au
RUu

R,

ρ
(Uu

L )
2

2 +P(Au
L) = ρ

(Uu
R)

2

2 +P(Au
R).

(14)
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The first two equations come from the assumption that the
flow between two initial states is inviscid, and the forward
characteristic information, Wf , and the backward character-
istic information, Wb.

To approximate the second order derivative of u, we
use the spectral method involving Chebyshev differentia-
tion matrixes, defined for the Chebyshev collocation points
{x j} j=0,...,N as follows (see [22]):

(DN)00 =
2N2 +1

6
, (DN)NN =−2N2 +1

6
,

(DN) j j =−
x j

2(1− x2
j)
, j = 1, ...,N−1,

(DN)i j =
ci

c j

(−1)i+ j

(xi− x j)
, i 6= j, i, j = 0, ...,N−1,

where

ci =

{
2, i = 0 or N,
1, otherwise.

This discretization can be coupled with the discontin-
uous Galerkin scheme described above, by matching the so-
lution at Chebyshev points, performing the derivative using
these points, then returning back to the Legendre points.

Using this method, we compare dispersion (ρw > 0)
and dispersionless (ρw = 0) models. We choose a rather high
density for the wall in order to underline the difference. The
result of the simulation is given below:

Figure 2. Comparison between aortic pressure in absence of
dispersion (green) and aortic pressure in presence of dispersion

(red).

We observe that for the dispersionless case, the multi-
ple peaks between heartbeats indicate that the waves which
originate during a systole reflect off the boundaries and travel

back and forth (with decreased amplitudes) during the dias-
tole. These can be used to compute the speeds of the pulse
waves in relation to the heart rates, similar to [12].

In the dispersive case, the pressure waves have much
fewer oscillations than in the dispersionless case. This can
be explained by the higher density of the wall, hence higher
wall inertia, and consequently fewer transversal oscillations.
Since these are temporal recordings at one spatial location,
these show an averaging effect due to dispersion of flow
along the vessel, and not a dampening of the waves. In sim-
ulations we also witnessed a greater degree of the averaging
when the wall density increase. If on the other hand we keep
all the parameters (e.g. wall density etc) but we consider a
shorter length of the vessel M, then by rescaling the spatial
variable x̃ = x/M, one obtains a similar effect - of increas-
ing the value of the wall density, and hence of averaging the
pressure pulses originating from the left ventricle. Another
effect which can be captured in our numerical model is the
variable (along the vessel length) radii and elasticity.

4. Optimization of Mean Arterial Pressure
We now use the numerical model developed so far to

perform several optimization tasks, in the same spirit as [4].
The first one is to maintain the mean arterial pressure close
to a prescribed reference value (Pre f ), in presence of external
pressure changes. The external pressure Pext is taken to vary
with time, to mimic the respiratory cycle, according to

Pext(t) = 14+7.5sin2t (mmHg).

Here we consider an arterial segment of length 0.5 m. The
following parameter values are used throughout the sequel:
µ = 3× 10−5 mmHg (viscosity of the blood), ρ = 1050
Kg/m3 (blood density), β = 1418 N/m (elasticity parame-
ter), Pre f = 100 mmHg and the total time of the simulation is
t f inal = 10 sec.

We are interested in finding the optimal HR (and later
also terminal resistance Rt - assumed constant during one
heartbeat) which leads to the minimization of the following
cost functional

J =
∫ t0+Tpulse

t0
|Pavg(t)−Pre f |2 dt =

=
∫ t0+Tpulse

t0

∣∣∣∣1L
∫ L

0
P(x, t)dx−Pre f

∣∣∣∣2 dt.

Here the integration is done using an entire heartbeat, with
duration Tpulse = 60/HR. The systolic period is taken to be
consistently one quarter of Tpulse.
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Upon optimization on HR alone, we obtain the follow-
ing 10-sec recording of the aortic pressure, plotted together
with the left ventricular pressure. The first heartbeat has not
been included in the plot, since the initial condition is anoma-
lous and does not affect the subsequent dynamics.

Figure 3. 10-second recording of pressure and velocity with
optimal HR.

Figure 4. Optimal HR for maintaining constant mean pressure at
100 mmHg (Rt = 0.9).

When including the terminal resistance as one of the
optimization parameters, we notice a different pattern of the
optimal HR, which is to be expected. The variability of the
HR and terminal resistance Rt are shown in the figures below:

Figure 5. Optimal HR and Rt for maintaining constant mean
pressure at 100 mmHg.

We observe that the terminal resistance Rt is close to 1,
which means that there is almost a complete reflection of the
characteristic waves and almost complete blockage in the ter-
minal site. HR varies in sync with the respiratory cycle, but
the presence of peripheral resistance mechanism is breaking
the periodicity of the HR variability, which is what is ob-
served in the real system. Also we note that comparing this
range of HR with the results above (when only HR was used
in optimization, keeping Rt = 0.9 fixed), leads us to the con-
clusion that in order to maintain a prescribed mean pressure
over one heart beat increasing the Rt (even to its maximal
value) is more efficient than increasing the HR. Naturally,
the consideration of a single arterial segment (aorta) avoids
the effects of the complexity of the vascular network, which
would add additional irregular behavior in the HR variability.

5. Optimal Control of Mean Arterial Pressure
We consider the optimal control problem of achieving

a prescribed mean arterial pressure by allowing for variable
terminal resistance Rt = R during the time period [t0, t0 +
Tpulse] of one heart beat, Tpulse = 60/HR. Note that we do
not perform optimization on the heart rate HR, since the HR
can be controlled separately.

For simplicity, we formulate our optimal control prob-
lem using the dispersionless system:

∂U
∂ t

+
∂F(U)

∂x
= S(U), (15)

and write it as an initial value problem in the Hilbert space
X = L2([0,M])×L2([0,M]):

U′(t) = G (t,U(t),y), U(0) = U0

where G (t,U,y) = −Ay(U)+S(U) and Ay is an unbounded
operator on X

Ay(U) =
∂F(U)

∂x
with domain

D(Ay) = {U = (A;U) ∈ X = L2([0,M])×L2([0,M])

: Wb =−yWf }

encodes the boundary conditions in terms of the control vari-
able y (expressed as boundary control). In our application
y = Rt is the terminal reflection coefficient which is allowed
to vary during the time period of one heart beat T = 60/HR.

The optimization task is defined as follows: deter-
mine the optimal terminal resistance that achieves the desired
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mean pressure. This is a nontrivial fact, since we assume the
external pressure is variable (possibly due to a sudden drop
or rise in pressure,) the system tries to find the optimal value
of the Heart Rate that achieves the desired goal.

The optimal control problem is to find y = y(t) that
minimizes the integral

J1 =
∫ T

0
|Pavg(t)−Pre f |2 dt =

=
∫ T

0

∣∣∣∣ 1
M

∫ M

0
P(x, t)dx−Pre f

∣∣∣∣2 dt.

Due to the non-standard nature of the Dirichlet boundary
control problem posed, we expect that the full PDE bound-
ary control will lead to an adjoint formulation of the opti-
mal control problem involving integral formulation of the
necessary condition for optimality (see [13]). This will be
pursued elsewhere. In the sequel we turn to a pseudo spec-
tral discretization of the optimal control problem [15], [19].
The discretization uses the same framework as the numerical
scheme already discussed, using Legendre polynomials and
Legendre Gauss nodes. For simplicity, we describe this dis-
cretization procedure on an optimal control problem for the
Dirichlet boundary control for the viscous Burgers equation:


ut +uux−νuxx = f , x ∈ [0,M], t ∈ [0,T ],
u(x,0) = u0(x), x ∈ [0,M],

u(0, t) = g(t), u(M, t) = h(t), t ∈ [0,T ],

with g and h the controls, and cost functional to be minimized

J(g,h) =
∫ T

0

∫ M

0
|u(x, t)−ure f (x, t)|2 dxdt

where ure f is a reference (desired) profile for the solution.
We choose the Legendre-Gauss-Lobatto (LGL) points

−1 = x0 < x1 < .. .xN−1 < xN = 1, (cf. [19]), where
x1, . . .xN−1 are the zeros of L′N , the derivatives of the Legen-
dre polynomial of degree N and we approximate the function
u using the Lagrange interpolant for the points (x j,u(x j)).
Then we introduce the approximate solution:

uN(ξ ) =
N

∑
k=0

ûkLk(ξ )

and convert the optimal PDE control problem to the optimal
ODE control problem:

Minimize
∫ T

0

K

∑
k=0
|ûk− ûre f

k|2dt

subject to

dûk

dt
= Fk(û1, . . . , ûK ;g,h). (16)

Here the right-hand side is obtained from the variational for-
mulation of the PDE:

d
dt
(u,φ)L2−1/2(u2,φx)L2 +ν(ux,φx)L2 = ( f ,φ)L2 .

If we restrict the test functions to polynomials of degree N or
less, then we obtain

d
dt
(uN ,Lk)L2−1/2((uN)2,(Lk)x)L2 +ν(uN

x ,(Lk)x)L2 =( f ,Lk)L2

or

d
dt

ûk+1/2
(
((uN)2)x,Lk

)
L2−ν

(
uN ,(Lk)xx

)
L2 +Bk =( f ,Lk)L2 .

Here the boundary contribution is

Bk =−1/2(uN)2Lk +ν(uNL′k)
∣∣x=M
x=0 .

This leads to the expression for the right hand side in (16):

Fk(û1, . . . , ûK ;g,h) =

=−1/2
(
((uN)2)x,Lk

)
L2 +ν

(
uN ,(Lk)xx

)
L2−Bk +( f ,Lk)L2 .

Note that Bk can be written in terms of the boundary control
as:

Bk = g(t)2/2−h(t)2/2+ν(h(t)L′k(M)−g(t)L′k(0)).

Applying Pontryagin minimum principle we are led to
an adjoint problem for the adjoint variables λ k, k = 0, . . .K.

dλ k

dt
=−∂H

∂ ûk (17)

where

H =
K

∑
k=0
|ûk− ûre f

k|2−
K

∑
k=0

λ
kFk(û1, . . . , ûK ;g,h).

is the Hamiltonian. A necessary optimal condition is then
∇g,hH = 0, for each fixed time t, which yields the optimal
values g∗(t) and h∗(t).
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A similar construction can be carried out for the in-
viscid Euler system (15), which yields, upon discretization
using the same Gauss Legendre Lobatto points, the system

dÛk
i

dt
= F k

i (Û ;g), i = 1,2 k = 0, . . . ,K.

The adjoint system takes the form

dΛ̂k
i

dt
=−∂H

∂Ûk
i

where the Hamiltonian function is

H (Û ,Λ;g) = F0(Û)−Λ
k
i F

k
i (Û ;g).

Applying of the Pontryagin minimum principle leads to the
computation of the optimal g∗(t). We remark that while
this is a nonstandard application of the Pontryagin minimum
principle, it follows the same steps as the traditional princi-
ple where pure Dirichlet boundary conditions are involved.
A numerical implementation of this discretized control prob-
lem as well as a more detailed discussion on the connection
with the full PDE boundary control will be reported else-
where.

6. Conclusions
The numerical optimization results presented here are

relevant for understanding how boundary control affects the
dynamics of the pressure and flow in an arterial segment, via
the valve model at the root of the vascular network and via
peripheral resistance model at the outflow. The consideration
of a single edge can be viewed as certainly restrictive from
a physiological point of view, but can help in further studies
where the entire vascular network is considered. Further-
more, more realistic models for the rheology of blood, for
the mechanical characteristics of the tube walls and for the
fluid-structure interactions are worthy to be incorporated in
the optimization studies presented here, something we intend
to report elsewhere.
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